XML Persian Abstract Print


Urmia university of medical sciences , ya.sharifi@gmail.com
Abstract:   (2648 Views)
Background & Aims:  The increasing rate of vancomycin resistant Staphylococcus aureus (VRSA) with biofilm formation may become a new threat to humans. In such cases, finding an effective treatment strategy such as using Nanotechnology (Nano- drugs) to deal with these types of infections may be promising. This study aimed to investigate the inhibitory effects of silver nanoparticles (SNPs) on biofilm formation of VRSAs.
Materials and Methods: Clinical S. aureus isolates were identified to the species level by conventional methods, and their identities were later confirmed by PCR. Following the determination of susceptibility patterns of the isolates; all the screened S.aureus isolates have been assessed regarding their susceptibility to vancomycin. Detection of vanA gene and determination of minimum inhibitory concentrations (MICs) of VRSAs were carried out using PCR and Etest methods, respectively. The biofilm production was assessed on all VRSA isolates in the presence/absence of SNPs using micro-titer plate method.
Results:  In total, 11 (6.21%) VRSAs were identified among 177 S. aureus clinical isolates. These isolates were included in the biofilm production assay. All of the VRSAs were multidrug resistance and biofilm producers. The inhibitory effect of SNPs in concentration of 250 µg/ml on biofilm formation of VRSA isolates was significant (Pv = 0.01).
Conclusion:  Based on our findings, SNPs can prevent biofilm formation of VRSAs and applying of these nanoparticles may prohibit from the persistence and colonization of such resistant isolates.
Full-Text [PDF 656 kb]   (1715 Downloads)    
Type of Study: orginal article | Subject: Special

References
1. Loomba PS, Taneja J, Mishra B. Methicillin and vancomycin resistant S. aureus in hospitalized patients. J Glob Infect Dis 2010; 2: 275-283. [DOI:10.4103/0974-777X.68535] [PMID] [PMCID]
2. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35: 322-332. [DOI:10.1016/j.ijantimicag.2009.12.011] [PMID]
3. Singh R, Nalwa HS. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J Biomed Nanotechnol 2011; 7: 489-503. [DOI:10.1166/jbn.2011.1324] [PMID]
4. Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 2012; 112: 841-852. [DOI:10.1111/j.1365-2672.2012.05253.x] [PMID]
5. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of Staphylococcal biofilm formation. J Microbiol Methods 2000; 40: 175-179. [DOI:10.1016/S0167-7012(00)00122-6]
6. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement, Wayne, PA: CLSI, 2014 Document M100-S124.
7. O'Toole GA. Microtiter dish biofilm formation assay. J Vis Exp 2011; 47. doi: 10.3791/2437 [DOI:10.3791/2437] [PMID] [PMCID]
8. Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis 2007; 115: 891-899. doi: 10.1111/j.1600-0463.2007.apm_630.x [DOI:10.1111/j.1600-0463.2007.apm_630.x] [PMID]
9. Jiang L, Yu Y, Li Y, Yu Y, Duan J, Zou Y, et al. Oxidative damage and energy metabolism disorder contribute to the hemolytic effect of amorphous silica nanoparticles. Nanoscale Res Lett 2016;11(1):57. https://doi.org/10.1186/s11671-016-1280-5 [DOI:10.1186/s11671-021-03521-2] [PMID] [PMCID]
10. Ghahremani M, Jazani NH, Sharifi Y. Emergence of vancomycin-intermediate and -resistant Staphylococcus aureus among methicillin-resistant S. aureus isolated from clinical specimens in the northwest of Iran. J Glob Antimicrob Resist 2018; 14: 4-9. [DOI:10.1016/j.jgar.2018.01.017] [PMID]
11. Hiramatsu K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis 2001; 1: 147-155. [DOI:10.1016/S1473-3099(01)00091-3]
12. Levine DP. Vancomycin: a history. Clin Infect Dis 2006; 42 Suppl 1:S5-12. doi: 10.1086/491709 [DOI:10.1086/491709] [PMID]
13. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33 (2012) 5967-5982. [DOI:10.1016/j.biomaterials.2012.05.031] [PMID]
14. Sievert DM, Rudrik JT, Patel JB, McDonald LC, Wilkins MJ, Hageman JC. Vancomycin-resistant Staphylococcus aureus in the United States, 2002-2006. Clin Infect Dis 2008; 46: 668-674. [DOI:10.1086/527392] [PMID]
15. Hasan R, Acharjee M, Noor R. Prevalence of vancomycin resistant Staphylococcus aureus (VRSA) in methicillin resistant S. aureus (MRSA) strains isolated from burn wound infections. Ci Ji Yi Xue Za Zhi 2016; 28: 49-53. [DOI:10.1016/j.tcmj.2016.03.002] [PMID] [PMCID]
16. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver nanoparticles as potential antibacterial agents. Molecules 2015; 20: 8856-8874. [DOI:10.3390/molecules20058856] [PMID] [PMCID]
17. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 2011; 24: 135-141. [DOI:10.1007/s10534-010-9381-6] [PMID]
18. Kalishwaralal K, BarathManiKanth S, Pandian SR, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces 2010; 79: 340-344. [DOI:10.1016/j.colsurfb.2010.04.014] [PMID]
19. Wu D, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod 2014; 40: 285-290. [DOI:10.1016/j.joen.2013.08.022] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.