XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saadatian kharajo R, Abroun S, Soleimani M. Evaluation of stemness genes expression of OCT4, SOX2, Nanog, C-Myc and surface marker of CD133 on myeloma cells. Journal of Research in Applied and Basic Medical Sciences 2020; 6 (2) :96-103
URL: http://ijrabms.umsu.ac.ir/article-1-110-en.html
Department of hematology, Faculty of medical sciences, Tarbiat Modares University, Tehran, Iran , Email: abroun@modares.ac.ir
Abstract:   (2492 Views)
Cancer stem cells that have the ability to proliferation and self-renewal were cause to drug resistance and metastasis in malignancies. In multiple myeloma, these cancer stem cells (MMCSCs) play a very important role in the recurrence of the disease. Detection of these cells can create new ways for treating these patients. In this study, stemness genes and phenotypic markers were investigated as the methods for identifying cancer stem cells in multiple myeloma.Expression of stemness genes of OCT4, SOX2, Nanog, C-Myc and target genes of STAT3 and TCF3 by PCR and Real Time PCR and also expression of surface markers of CD19, CD33, CD133, CD38 and CD56 by flow cytometry in RPMI8226 and U266 were studied.The results of the study showed that myeloma cells were express the stemness genes, and also CD133 surface marker was express in the some of myeloma cells. Identification of myeloma cancer stem cells can be crucial in the diagnosis, treatment and prognosis of multiple myeloma patients. CD133+ myeloma cells that express stemness genes are Multiple Myeloma Cancer Stem Cells (MMCSC) that can be considered as therapeutic targets.
Full-Text [PDF 415 kb]   (637 Downloads)    
Type of Study: orginal article | Subject: Special

1. Wen L, Tang F. Single-cell sequencing in stem cell biology. Genome Biol 2016;17(1):1-12. [DOI:10.1186/s13059-016-0941-0] [PMID] [PMCID]
2. Engle, K. M.; Mei, T-S.; Wasa, M.; Yu J-Q. Molecular regulation of stem cell quiescence. Acc Chem Res. 2008;45(6):788-802. [DOI:10.1021/ar200185g] [PMID] [PMCID]
3. Ito K, Ito K. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal. Annu Rev Cell Dev Biol 2016;32(1):399-409. [DOI:10.1146/annurev-cellbio-111315-125134] [PMID] [PMCID]
4. Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep (Internet). 2017;50(3):117-25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27998397%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5422023 [DOI:10.5483/BMBRep.2017.50.3.222] [PMID] [PMCID]
5. Fedr R, Pernicová Z, Slabáková E, Straková N, Bouchal J, Grepl M, et al. Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells. Cytom Part A 2013;83 A(5):472-82. [DOI:10.1002/cyto.a.22273] [PMID]
6. Rycaj K, Tang DG. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations. Cancer Res 2015;75(19):4003-11. [DOI:10.1158/0008-5472.CAN-15-0798] [PMID] [PMCID]
7. Matsui WH. Cancer stem cell signaling pathways. Med (United States). 2016;95(1):S8-19. [DOI:10.1097/MD.0000000000004765] [PMID] [PMCID]
8. Pires-daSilva A, Sommer RJ. The evolution of signalling pathways in animal development. Nat Rev Genet. 2003 Jan;4(1):39-49. [DOI:10.1038/nrg977] [PMID]
9. Saunders A, Faiola F, Wang J. Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 2013 Jul;31(7):1227-36. [DOI:10.1002/stem.1384] [PMID] [PMCID]
10. Brigle K, Rogers B. Pathobiology and Diagnosis of Multiple Myeloma. Semin Oncol Nurs 2017;33(3):225-36. [DOI:10.1016/j.soncn.2017.05.012] [PMID]
11. Franqui-Machin R, Wendlandt EB, Janz S, Zhan F, Tricot G. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction? Oncotarget 2015;6(38):40496-506. [DOI:10.18632/oncotarget.5800] [PMID] [PMCID]
12. Yaccoby S. Two States of Myeloma Stem Cells. Clin Lymphoma, Myeloma Leuk 2018;18(1):38-43. [DOI:10.1016/j.clml.2017.09.020] [PMID]
13. Johnsen HE, Bøgsted M, Schmitz A, Bødker JS, El-Galaly TC, Johansen P, et al. The myeloma stem cell concept, revisited: From phenomenology to operational terms. Haematologica 2016;101(12):1451-9. [DOI:10.3324/haematol.2015.138826] [PMID] [PMCID]
14. Gocke CB, McMillan R, Wang Q, Begum A, Penchev VR, Ali SA, et al. IQGAP1 Scaffold-MAP Kinase Interactions Enhance Multiple Myeloma Clonogenic Growth and Self-Renewal. Mol Cancer Ther 2016;15(11):2733-9. [DOI:10.1158/1535-7163.MCT-16-0323] [PMID] [PMCID]
15. Issa ME, Cretton S, Cuendet M. Targeting Multiple Myeloma Cancer Stem Cells with Natural Products - Lessons from Other Hematological Malignancies. Planta Med 2017;83(9):752-60. [DOI:10.1055/s-0043-109558] [PMID]
16. Huff CA, Matsui W. Multiple myeloma cancer stem cells. J Clin Oncol 2008;26(17):2895-900. [DOI:10.1200/JCO.2007.15.8428] [PMID] [PMCID]
17. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76. [DOI:10.1016/j.cell.2006.07.024] [PMID]
18. Bradshaw A, Wickremsekera A, Tan ST, Peng L, Davis PF, Itinteang T. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme. Front Surg (Internet). 2016;3(April):21. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4831983&tool=pmcentrez&rendertype=abstract [DOI:10.3389/fsurg.2016.00021]
19. Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T. Cancer stem cells in colorectal cancer: A review. J Clin Pathol 2018;71(2):110-6. [DOI:10.1136/jclinpath-2017-204739] [PMID]
20. Rizzino A, Wuebben EL. Biochimica et Biophysica Acta Sox2 / Oct4 : A delicately balanced partnership in pluripotent stem cells and embryogenesis ☆. BBA - Gene Regul Mech 2016;1859(6):780-91. [DOI:10.1016/j.bbagrm.2016.03.006] [PMID]
21. Cheng CC, Shi LH, Wang XJ, Wang SX, Wan XQ, Liu SR, et al. Stat3/Oct-4/c-Myc signal circuit for regulating stemness-mediated doxorubicin resistance of triple-negative breast cancer cells and inhibitory effects of WP1066. Int J Oncol 2018;53(1):339-48. [DOI:10.3892/ijo.2018.4399] [PMID]
22. Kim JY, Kim JC, Lee JY, Park MJ. Oct4 suppresses IR-induced premature senescence in breast cancer cells through STAT3- and NF-κB-mediated IL-24 production. Int J Oncol 2018;53(1):47-58. [DOI:10.3892/ijo.2018.4391] [PMID] [PMCID]
23. Jung S-H, Ahn S, Choi H-W, Shin M-G, Lee S, Yang D-H, et al. STAT3 expression is associated with poor survival in non-elderly adult patients with newly diagnosed multiple myeloma. Blood Res 2017;52(4):293. [DOI:10.5045/br.2017.52.4.293] [PMID] [PMCID]
24. Bharti AC, Shishodia S, Reuben JM, Weber D, Alexanian R, Raj-Vadhan S, et al. Nuclear factor-κB and STAT3 are constitutively active in CD138 + cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 2004;103(8):3175-84. [DOI:10.1182/blood-2003-06-2151] [PMID]
25. Yi F, Pereira L, Merrill BJ. Tcf3 Functions as a Steady-State Limiter of Transcriptional Programs of Mouse Embryonic Stem Cell Self-Renewal. Stem Cells 2008;26(8):1951-60. [DOI:10.1634/stemcells.2008-0229] [PMID] [PMCID]
26. Matoba R, Niwa H, Masui S, Ohtsuka S, Carter MG, Sharov AA, et al. Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS One 2006;1(1). [DOI:10.1371/journal.pone.0000026] [PMID] [PMCID]
27. Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene (Internet). 2001 Sep 9 (cited 2018 Aug 27);20(42):5991-6000. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11593406 [DOI:10.1038/sj.onc.1204833] [PMID]
28. Li C, Zhu M, Lou X, Liu C, Chen H, Lin X, et al. Transcriptional factor OCT4 promotes esophageal cancer metastasis by inducing epithelial-mesenchymal transition through VEGF-C/VEGFR-3 signaling pathway. Oncotarget 2017;8(42):71933-45. [DOI:10.18632/oncotarget.18035] [PMID] [PMCID]
29. Cao L, Li C, Shen S, Yan Y, Ji W, Wang J, et al. OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma. BMC Cancer (Internet). 2013;13:82. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23433354 [DOI:10.1186/1471-2407-13-82] [PMID] [PMCID]
30. Comisso E, Scarola M, Rosso M, Piazza S, Marzinotto S, Ciani Y, et al. OCT4 controls mitotic stability and inactivates the RB tumor suppressor pathway to enhance ovarian cancer aggressiveness. Oncogene 2017;36(30):4253-66. [DOI:10.1038/onc.2017.20] [PMID]
31. Lin P, Owens R, Tricot G, Wilson CS. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol 2004;121(4):482-8. [DOI:10.1309/74R4TB90BUWH27JX] [PMID]
32. Mahmoud MS, Fujii R, Ishikawa H, Kawano MM. Enforced CD19 expression leads to growth inhibition and reduced tumorigenicity. Blood 1999;94(10):3551-8. [DOI:10.1182/blood.V94.10.3551.422k08_3551_3558] [PMID]
33. Montalba MA, Mateo G, Castellanos M, Rasillo A, Gutie NC, Martı ML, et al. Human Cancer Biology Genetic Abnormalities and Patterns of Antigenic Expression in Multiple Myeloma. Clin Cancer Res 2005;11(25):3661-7. [DOI:10.1158/1078-0432.CCR-04-1489] [PMID]
34. Li Z. CD133: A stem cell biomarker and beyond. Exp Hematol Oncol 2013;2(1):1-8. https://doi.org/10.1186/2162-3619-1-1 [DOI:10.1186/2162-3619-2-17] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb