XML Persian Abstract Print


Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; , Ranjbarvan@gmail.com
Abstract:   (2073 Views)
Bone allografts have become an accepted technology to replace bone loss due to common diseases, such as tumor resection, trauma, and failed total joint arthroplasty. This study briefly reviews a branch of regenerative medicine related to bone allografts and its related aspects. As new allografts stimulate an immune rejection response, bone grafts are usually prepared by freezing or freeze-drying to decrease the immune system responses. The notable biological events of associations, such as hemorrhage and inflammation, osteogenesis, osteoinduction, osteoconduction, and impressive remodeling, result in a load-bearing structure. Generally, cancellous allografts are effectively incorporated, while cortical grafts remain an admixture of viable regenerated bone and old necrotic bone for a prolonged duration. Massive bone allografts used in reconstructing tumor resection have a long-term successful outcome in about 80 percent of the procedures. Similar success has been reported for its use in total joint revision surgery and other clinical applications. The significant complications reported for grafting procedures are infection, bone graft fracture, nonunion at the graft-host juncture, and rare massive allograft resorption. Although bone allografting is a successful therapeutic approach, emerging technologies will introduce more efficient bones by mobilizing the adjunctive growth factors, cell and gene-based therapies, and tissue engineering techniques. The primary and applicable knowledge of bone allografts is essential; however, continual investigations are necessary.
Full-Text [PDF 478 kb]   (1075 Downloads)    
Type of Study: review article | Subject: General

References
1. Golchin A, Shams F, Kangari P, Azari A, Hosseinzadeh S. Regenerative Medicine: Injectable Cell-Based Therapeutics and Approved Products. Adv Exp Med Biol 2020;1237:75-95. [DOI:10.1007/5584_2019_412]
2. Golchin A, Chatziparasidou A, Ranjbarvan P, Niknam Z, Ardeshirylajimi A. Embryonic Stem Cells in Clinical Trials: Current Overview of Developments and Challenges.. Adv Exp Med Biol 2020:1-19. [DOI:10.1007/5584_2020_592] [PubMed]
3. Hashemi S, Amirabad LM, Nazhvani FD, Zarrintaj P, Namazi H, Saadatfar A, et al. Bilayer Scaffolds for Interface Tissue Engineering and Regenerative Medicine: A Systematic Reviews. Adv Exp Med Biol 2021. [DOI:10.1007/5584_2021_637] [PubMed]
4. Ardeshirylajimi A, Golchin A, Khojasteh A, Bandehpour M. Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/β-catenin signalling by inorganic polyphosphate. Artif Cells Nanomed Biotechnol 2018;46(sup3):S943-S949. [DOI:10.1080/21691401.2018.1521816] [PubMed]
5. Golchin A, Shams F, Karami F. Advancing Mesenchymal Stem Cell Therapy with CRISPR/Cas9 for Clinical Trial Studies. Adv Exp Med Biol 2020;1247:89-100. [DOI:10.1007/5584_2019_459] [PubMed]
6. Manyalich M, Navarro A, Koller J, Loty B, de Guerra A, Cornu O, et al. European quality system for tissue banking. Transplant Proc 2009;41(6):2035-43. [DOI:10.1016/j.transproceed.2009.06.157 [Add to Citavi project by DOI] PMid:19715826] [PubMed]
7. An HS, Simpson JM, Glover JM, Stephany J. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine (Phila Pa 1976) 1995;20(20):2211-6. [DOI:10.1097/00007632-199510001-00006] [PMID]
8. Enneking WF, Campanacci DA. Retrieved human allografts : a clinicopathological study. J Bone Joint Surg Am 2001;83(7):971-86. [DOI:10.2106/00004623-200107000-00001]
9. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J 2001; Suppl 2(Suppl 2):S96-101. [DOI] [PMID] [PMCID]
10. Niknam Z, Golchin A, Rezaei-Tavirani M, Ranjbarvan P, Zali H, Omidi M, et al. Osteogenic Differentiation Potential of Adipose-Derived Mesenchymal Stem Cells Cultured on Magnesium Oxide/Polycaprolactone Nanofibrous Scaffolds for Improving Bone Tissue Reconstruction. Adv Pharm Bull 2020:. [DOI:10.34172/apb.2022.015]
11. Golchin A, Farzaneh S, Porjabbar B, Sadegian F, Estaji M, Ranjbarvan P, et al. Regenerative Medicine Under the Control of 3D Scaffolds: Current State and Progress of Tissue Scaffolds. Curr Stem Cell Res Ther 2020 ;16(2):209-29. [DOI:10.2174/1574888X15666200720115519] [PMID]
12. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 2000;(371):10-27. [DOI:10.1097/00003086-200002000-00003]
13. Gross TP, Jinnah RH, Clarke HJ, Cox QG. The biology of bone grafting. Orthopedics 1991;14(5):563-8. [DOI:10.3928/0147-7447-19910501-11] [PubMed]
14. Urist MR, Mikulski A, Boyd SD. A chemosterilized antigen-extracted autodigested alloimplant for bone banks. Arch Surg 1975;110(4):416-28. [DOI:10.1001/archsurg.1975.01360100058011 [Add to Citavi project by DOI] PMid:1096848] [PubMed]
15. Urist MR, Dawson E. Intertransverse process fusion with the aid of chemosterilized autolyzed antigen-extracted allogeneic (AAA) bone. Clin Orthop Relat Res 1981 ;(154):97-113. [DOI:10.1097/00003086-198101000-00016]
16. Urist MR, Silverman BF, Büring K, Dubuc FL, Rosenberg JM. The bone induction principle. Clin Orthop Relat Res 1967;53:243-83. [DOI:10.1097/00003086-196707000-00026] [PubMed]
17. Lane JM. Bone morphogenic protein science and studies. J Orthop Trauma 2005;19(10 Suppl):S17-22. [DOI:10.1097/00005131-200511101-00006 [Add to Citavi project by DOI] PMid:16479218] [PubMed]
18. Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res 2019;23:9. 10.1186/s40824-019-0157-y [Add to Citavi project by DOI] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.