XML Print


Professor, Parasitology and Mycology Department, Infectious Diseases Centers, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran , a.fattahi@ssu.ac.ir
Abstract:   (1173 Views)
Leishmaniasis is a neglected disease that affects more than 12 million people worldwide. After parasite inoculum by female blood-sucking insects, e.g. Phlebotomus, neutrophils quickly infiltrate and phagocytes Leishmania parasites. Macrophages are the second immune cells. They possess several pattern recognition receptors that respond to different surface molecules such as Lipophosphoglycan, glycoprotein 63 (GP63), PPG, GIPL, CP, and SAP. It was found that Leishmania GP63 cleaves several targets of infected macrophages, including the myristoylated alanine-rich C kinase substrate, p130CAS, PEST, NF-B, and AP-1. After activation of surface molecules, lipid metabolites of arachidonic acid, including leukotrienes and prostaglandins, are important mediators in Leishmaniasis. These lipid metabolites can be metabolized by different enzymes, including the cyclooxygenase and lipoxygenase.
Full-Text [PDF 571 kb]   (429 Downloads)    
Type of Study: review article | Subject: Special

References
1. Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 2004;27(5):305-18. [DOI:10.1016/j.cimid.2004.03.004] [PMID]
2. Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 2008;8(12):935-47. [DOI:10.1038/nri2455] [PMID]
3. Nestle FO, Di Meglio P, Qin J-Z, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol 2009;9(10):679-91. [DOI:10.1038/nri2622] [PMID] [PMCID]
4. Solbach W, Laskay T. The host response to Leishmania infection. Adv Immunol 1999;74:275-317. [DOI:10.1016/S0065-2776(08)60912-8] [PMID]
5. Beil W, Meinardus-Hager G, Neugebauer D, Sorg C. Differences in the onset of the inflammatory response to cutaneous leishmaniasis in resistant and susceptible mice. J Leukoc Biol 1992;52(2):135-42. [DOI:10.1002/jlb.52.2.135] [PMID]
6. Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 2008;321(5891):970-4. [DOI:10.1126/science.1159194] [PMID] [PMCID]
7. Ribeiro-Gomes F, Sacks D. The influence of early neutrophil-Leishmania interactions on the host immune response to infection. Front Cell Infect Microbiol 2012;2:59. [DOI:10.3389/fcimb.2012.00059] [PMID] [PMCID]
8. Ribeiro-Gomes FL, Otero AC, Gomes NA, Moniz-de-Souza MCA, Cysne-Finkelstein L, Arnholdt AC, et al. Macrophage interactions with neutrophils regulate Leishmania major infection. J Immunol 2004;172(7):4454-62. [DOI:10.4049/jimmunol.172.7.4454] [PMID]
9. Brittingham A, Chen G, McGwire BS, Chang K-P, Mosser DM. Interaction of Leishmania gp63 with cellular receptors for fibronectin. Infect Immun 1999;67(9):4477-84. [DOI:10.1128/IAI.67.9.4477-4484.1999] [PMID] [PMCID]
10. Vargas-Inchaustegui DA, Tai W, Xin L, Hogg AE, Corry DB, Soong L. Distinct roles for MyD88 and Toll-like receptor 2 during Leishmania braziliensis infection in mice. Infect Immun 2009;77(7):2948-56. [DOI:10.1128/IAI.00154-09] [PMID] [PMCID]
11. Peters C, Aebischer T, Stierhof Y-D, Fuchs M, Overath P. The role of macrophage receptors in adhesion and uptake of Leishmania mexicana amastigotes. J Cell Sci 1995;108(12):3715-24. [DOI:10.1242/jcs.108.12.3715] [PMID]
12. Kedzierski L, Montgomery J, Bullen D, Curtis J, Gardiner E, Jimenez-Ruiz A, et al. A leucine-rich repeat motif of Leishmania parasite surface antigen 2 binds to macrophages through the complement receptor 3. J Immunol 2004;172(8):4902-6. [DOI:10.4049/jimmunol.172.8.4902] [PMID]
13. Blackwell JM, Ezekowitz R, Roberts MB, Channon JY, Sim RB, Gordon S. Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. J Exp Med 1985;162(1):324-31. [DOI:10.1084/jem.162.1.324] [PMID] [PMCID]
14. Kima PE, Constant SL, Hannum L, Colmenares M, Lee KS, Haberman AM, et al. Internalization of Leishmania mexicana complex amastigotes via the Fc receptor is required to sustain infection in murine cutaneous leishmaniasis. J Exp Med 2000;191(6):1063-8. [DOI:10.1084/jem.191.6.1063] [PMID] [PMCID]
15. Kropf P, Freudenberg N, Kalis C, Modolell M, Herath S, Galanos C, et al. Infection of C57BL/10ScCr and C57BL/10ScNCr mice with Leishmania major reveals a role for Toll-like receptor 4 in the control of parasite replication. J Leukoc Biol 2004;76(1):48-57. [DOI:10.1189/jlb.1003484] [PMID]
16. Peters-Golden M, Brock T. 5-lipoxygenase and FLAP. Prostaglandins Leukot Essent Fatty Acids 2003;69(2):99-109. [DOI:10.1016/S0952-3278(03)00070-X] [PMID]
17. Ago H, Kanaoka Y, Irikura D, Lam BK, Shimamura T, Austen KF, et al. Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature 2007;448(7153):609-12. [DOI:10.1038/nature05936] [PMID]
18. Murphy RC, Gijón MA. Biosynthesis and metabolism of leukotrienes. Biochem J 2007;405(3):379-95. [DOI:10.1042/BJ20070289] [PMID]
19. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011;31(5):986-1000. [DOI:10.1161/ATVBAHA.110.207449] [PMID] [PMCID]
20. Smith T, McCracken J, Shin Y-K, DeWitt D. Arachidonic acid and nonsteroidal anti-inflammatory drugs induce conformational changes in the human prostaglandin endoperoxide H2 synthase-2 (cyclooxygenase-2). J Biol Chem 2000;275(51):40407-15. [DOI:10.1074/jbc.M005563200] [PMID]
21. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, et al. Cyclooxygenase in biology and disease. FASEB J 1998;12(12):1063-73. [DOI:10.1096/fasebj.12.12.1063] [PMID]
22. Chandrasekharan N, Dai H, Roos KLT, Evanson NK, Tomsik J, Elton TS, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci 2002;99(21):13926-31. [DOI:10.1073/pnas.162468699] [PMID] [PMCID]
23. Scher JU, Pillinger MH. The anti-inflammatory effects of prostaglandins. J Invest Med 2009;57(6):703-8. [DOI:10.2310/JIM.0b013e31819aaa76] [PMID]
24. Mukbel RM, PATTEN C, Gibson K, Ghosh M, Petersen C, Jones DE. Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. Am J Trop Med Hyg 2007;76(4):669-75. [DOI:10.4269/ajtmh.2007.76.669] [PMID]
25. Miralles GD, Stoeckle M, McDermott D, Finkelman F, Murray H. Th1 and Th2 cell-associated cytokines in experimental visceral leishmaniasis. Infec Immun 1994;62(3):1058-63. [DOI:10.1128/iai.62.3.1058-1063.1994] [PMID] [PMCID]
26. Dey R, Majumder N, Majumdar SB, Bhattacharjee S, Banerjee S, Roy S, et al. Induction of Host Protective Th1 Immune Response by Chemokines in Leishmania donovani‐infected BALB/c Mice. Scand J Immunol 2007;66(6):671-83. [DOI:10.1111/j.1365-3083.2007.02025.x] [PMID]
27. Chaves MM, Marques-da-Silva C, Monteiro APT, Canetti C, Coutinho-Silva R. Leukotriene B4 Modulates P2X7 Receptor-Mediated Leishmania amazonensis Elimination in Murine Macrophages. J Immunol 2014;192(10):4765-73. [DOI:10.4049/jimmunol.1301058] [PMID]
28. Serezani CH, Perrela JH, Russo M, Peters-Golden M, Jancar S. Leukotrienes are essential for the control of Leishmania amazonensis infection and contribute to strain variation in susceptibility. J Immunol 2006;177(5):3201-8. [DOI:10.4049/jimmunol.177.5.3201] [PMID]
29. Morato CI, da Silva IA, Borges AF, Dorta ML, Oliveira MA, Jancar S, et al. Essential role of leukotriene B 4 on Leishmania (Viannia) braziliensis killing by human macrophages. Microbes Infect 2014;16(11):945-53. [DOI:10.1016/j.micinf.2014.08.015] [PMID]
30. Hu Y, Fisette PL, Denlinger LC, Guadarrama AG, Sommer JA, Proctor RA, et al. Purinergic receptor modulation of lipopolysaccharide signaling and inducible nitric-oxide synthase expression in RAW 264.7 macrophages. J Biol Chem 1998;273(42):27170-5. [DOI:10.1074/jbc.273.42.27170] [PMID]
31. Martel-Gallegos G, Casas-Pruneda G, Ortega-Ortega F, Sánchez-Armass S, Olivares-Reyes JA, Diebold B, et al. Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c-Src/Pyk2 and ERK1/2. Biochim Biophys Acta Gen Subj 2013;1830(10):4650-9. [DOI:10.1016/j.bbagen.2013.05.023] [PMID]
32. Lee W, Kim HS, Lee GR. Leukotrienes induce the migration of Th17 cells. Immun Cell Biol 2015;93(5):472-9. [DOI:10.1038/icb.2014.104] [PMID]
33. Sacramento LA, Cunha FQ, de Almeida RP, da Silva JS, Carregaro V. Protective role of 5-lipoxigenase during Leishmania infantum infection is associated with Th17 subset. BioMed Res Int 2014;2014. [DOI:10.1155/2014/264270] [PMID] [PMCID]
34. Toda A, Terawaki K, Yamazaki S, Saeki K, Shimizu T, Yokomizo T. Attenuated Th1 induction by dendritic cells from mice deficient in the leukotriene B4 receptor 1. Biochimie 2010;92(6):682-91. [DOI:10.1016/j.biochi.2009.12.002] [PMID]
35. Lonardoni M, Barbieri C, Russo M, Jancar S. Modulation of Leishmania (L.) amazonensis growth in cultured mouse macrophages by prostaglandins and platelet activating factor. Mediators Inflamm 1994;3(2):137-41. [DOI:10.1155/S0962935194000177] [PMID] [PMCID]
36. Barreto-de-Souza V, Pacheco GJ, Silva AR, Castro-Faria-Neto HC, Bozza PT, Saraiva EM, et al. Increased Leishmania replication in HIV-1-infected macrophages is mediated by tat protein through cyclooxygenase-2 expression and prostaglandin E2 synthesis. J Infect Dis 2006;194(6):846-54. [DOI:10.1086/506618] [PMID]
37. Kabututu Z, Martin SK, Nozaki T, Kawazu S-i, Okada T, Munday CJ, et al. Prostaglandin production from arachidonic acid and evidence for a 9, 11-endoperoxide prostaglandin H 2 reductase in Leishmania. Int J Parasitol 2003;33(2):221-8. [DOI:10.1016/S0020-7519(02)00254-0] [PMID]
38. Griffon B, Cillard J, Chevanne M, Morel I, Cillard P, Sergent O. Macrophage‐induced inhibition of nitric oxide production in primary rat hepatocyte cultures via prostaglandin E2 release. Hepatology 1998;28(5):1300-8. [DOI:10.1002/hep.510280519] [PMID]
39. Betz M, Fox B. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol 1991;146(1):108-13. [google scholar]
40. Snijdewint F, Kaliński P, Wierenga E, Bos J, Kapsenberg M. Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J Immunol 1993;150(12):5321-9. [google scholar]
41. Figueiredo AB, Serafim TD, Marques‐da‐Silva EA, Meyer‐Fernandes JR, Afonso LC. Leishmania amazonensis impairs DC function by inhibiting CD40 expression via A2B adenosine receptor activation. Eur J Immunol 2012;42(5):1203-15. [DOI:10.1002/eji.201141926] [PMID]
42. Gomes RS, de Carvalho LCF, de Souza Vasconcellos R, Fietto JLR, Afonso LCC. E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) of Leishmania amazonensis inhibits macrophage activation. Microbes Infect 2015;17(4):295-303. [DOI:10.1016/j.micinf.2014.12.009] [PMID]
43. Cadieux J-S, Leclerc P, St-Onge M, Dussault A-A, Laflamme C, Picard S, et al. Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal. Journal Cell Sci 2005;118(7):1437-47. [DOI:10.1242/jcs.01737] [PMID] [PMCID]
44. Pouliot M, Fiset M-É, Massé M, Naccache PH, Borgeat P. Adenosine up-regulates cyclooxygenase-2 in human granulocytes: impact on the balance of eicosanoid generation. J Immunol 2002;169(9):5279-86. [DOI:10.4049/jimmunol.169.9.5279] [PMID]
45. MacKenzie KF, Clark K, Naqvi S, McGuire VA, Nöehren G, Kristariyanto Y, et al. PGE2 induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway. J Immunol 2013;190(2):565-77. [DOI:10.4049/jimmunol.1202462] [PMID] [PMCID]
46. Haskó G, Kuhel DG, Chen J-F, Schwarzschild MA, Deitch EA, Mabley JG, et al. Adenosine inhibits IL-12 and TNF-α production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J 2000;14(13):2065-74. [DOI:10.1096/fj.99-0508com] [PMID]
47. Flamand N, Boudreault S, Picard S, Austin M, Surette ME, Plante H, et al. Adenosine, a potent natural suppressor of arachidonic acid release and leukotriene biosynthesis in human neutrophils. Am J Respir Crit Care Med 2000;161:S88-S94. [DOI:10.1164/ajrccm.161.supplement_1.ltta-18] [PMID]
48. Krump E, Picard S, Mancini J, Borgeat P. Suppression of leukotriene B4 biosynthesis by endogenous adenosine in ligand-activated human neutrophils. J Exp Med 1997;186(8):1401-6. [DOI:10.1084/jem.186.8.1401] [PMID] [PMCID]
49. Novais FO, Santiago RC, Báfica A, Khouri R, Afonso L, Borges VM, et al. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J Immunol 2009;183(12):8088-98. [DOI:10.4049/jimmunol.0803720] [PMID]
50. De Moura TR, Oliveira F, Rodrigues GC, Carneiro MW, Fukutani KF, Novais FO, et al. Immunity to Lutzomyia intermedia saliva modulates the inflammatory environment induced by Leishmania braziliensis. PLoS Negl Trop Dis 2010;4(6):e712. [DOI:10.1371/journal.pntd.0000712] [PMID] [PMCID]
51. Atayde VD, Aslan H, Townsend S, Hassani K, Kamhawi S, Olivier M. Exosome secretion by the parasitic protozoan Leishmania within the sand fly midgut. Cell Rep 2015;13(5):957-67. [DOI:10.1016/j.celrep.2015.09.058] [PMID] [PMCID]
52. Araújo-Santos T, Prates DB, Andrade BB, Nascimento DO, Clarêncio J, Entringer PF, et al. Lutzomyia longipalpis saliva triggers lipid body formation and prostaglandin E 2 production in murine macrophages. PLoS Negl Trop Dis 2010;4(11):e873. [DOI:10.1371/journal.pntd.0000873] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.