XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassan M, Khalilzadeh T, Sadighian S, Yazdinezhad A, Rahmati Zare H. Formulation of a broad spectrum nanoemulsion from thymus vulgaris essential oil with enhanced antimicrobial activity against problematic gram negative bacteria and fungi. Journal of Research in Applied and Basic Medical Sciences 2023; 9 (2) :109-122
URL: http://ijrabms.umsu.ac.ir/article-1-262-en.html
Associate Professor of Pharmaceutics, Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran , mhassan@zums.ac.ir
Abstract:   (853 Views)
Background & Aims:  Thymus vulgaris L. belonging to the Lamiaceae family has been widely used for medicinal purposes. T. vulgaris essential oil (EO), which is derived from the aerial parts of the plant, has shown potent antimicrobial activities in previous studies. However, its hydrophobic nature limits its application as a natural antimicrobial agent. Focusing on this problem, the objective of this survey was to develop a nano-sized delivery system of the EO not only to enhance the water solubility but also protect it from degradation.
Materials & Methods:  In this study, T. vulgaris EO-loaded nanoemulsion was prepared using Tween 80 and Span 60 (surfactants) via high-pressure homogenization and physicochemical characteristics, long-term stability and antimicrobial activity on a broad range of microorganisms were evaluated.
Results:  The GC-MS of the EO showed that thymol was the primary compound with a 45.6% value. TEM and AFM images showed the spherical shape of nanoparticles with an average droplet size of 175.6 ± 0.96 nm. Interestingly, the final formulation had significantly lower MICs and MBCs in comparison with pure oil. Furthermore, it showed the lowest MIC and MBC values against Ent. faecalis and B. subtilis, respectively. Regarding the antifungal effects of the formulation, it was more effective on C. albicans than A. niger.
Conclusion:  The obtained data revealed that encapsulation of the EO as nanoemulsion significantly elaborates its antimicrobial properties, which can be considered as an stable and effective antimicrobial formulation for various purposes such as a food preservative.
Full-Text [PDF 727 kb]   (534 Downloads)    
Type of Study: orginal article | Subject: Other

References
1. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 2015;6:22-9. [DOI:10.1016/j.nmni.2015.02.007] [PMID] []
2. Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021;9(10). [DOI:10.3390/microorganisms9102041] [PMID] []
3. Saad N, Muller C, Lobstein A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragrance J 2013;28. [DOI:10.1002/ffj.3165]
4. Dorman HJ, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 2000;88(2):308-16. [DOI:10.1046/j.1365-2672.2000.00969.x] [PMID]
5. Komaki A, Hoseini F, Shahidi S, Baharlouei N. Study of the effect of extract of Thymus vulgaris on anxiety in male rats. J Tradit Complement Med 2016;6(3):257-61. [DOI:10.1016/j.jtcme.2015.01.001] [PMID] []
6. Calo JR, Crandall PG, O'Bryan CA, Ricke SC. Essential oils as antimicrobials in food systems - A review. Food Control 2015;54:111-9. [DOI:10.1016/j.foodcont.2014.12.040]
7. Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids 2015;43:547-56. [DOI:10.1016/j.foodhyd.2014.07.012]
8. Bernardi DS, Pereira TA, Maciel NR, Bortoloto J, Viera GS, Oliveira GC, et al. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J Nanobiotechnology 2011;9:44. [DOI:10.1186/1477-3155-9-44] [PMID] []
9. Moraes-Lovison M, Marostegan LFP, Peres MS, Menezes IF, Ghiraldi M, Rodrigues RAF, et al. Nanoemulsions encapsulating oregano essential oil: Production, stability, antibacterial activity and incorporation in chicken pâté. LWT 2017;77:233-40. [DOI:10.1016/j.lwt.2016.11.061]
10. Rinaldi F, Oliva A, Sabatino M, Imbriano A, Hanieh PN, Garzoli S, et al. Antimicrobial Essential Oil Formulation: Chitosan Coated Nanoemulsions for Nose to Brain Delivery. Pharmaceutics 2020;12(7). [DOI:10.3390/pharmaceutics12070678] [PMID] []
11. Ramezani M, Behravan J, Yazdinezhad A. Composition and antimicrobial activity of the volatile oil of Artemisia kopetdaghensis Krasch., M.Pop. & Linecz ex Poljak from Iran. Flav Fragrance J 2006;21:869-71. [DOI:10.1002/ffj.1644]
12. Moghimi R, Ghaderi L, Rafati H, Aliahmadi A, McClements DJ. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem 2016;194:410-5. [DOI:10.1016/j.foodchem.2015.07.139] [PMID]
13. Zahi MR, Wan P, Liang H, Yuan Q. Formation and Stability of d-Limonene Organogel-Based Nanoemulsion Prepared by a High-Pressure Homogenizer. J Agri Food Chem 2014;62(52):12563-9. [DOI:10.1021/jf5032108] [PMID]
14. Asprea M, Leto I, Bergonzi MC, Bilia AR. Thyme essential oil loaded in nanocochleates: Encapsulation efficiency, in vitro release study and antioxidant activity. LWT 2017;77:497-502. [DOI:10.1016/j.lwt.2016.12.006]
15. Fu Y, Zu Y, Chen L, Shi X, Wang Z, Sun S, et al. Antimicrobial Activity of clove and rosemary essential oils alone and in combination. Phytother Res 2007;21:989-94. [DOI:10.1002/ptr.2179] [PMID]
16. Karthikeyan R, Amaechi BT, Rawls HR, Lee VA. Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch Oral Biol 2011;56(5):437-45. [DOI:10.1016/j.archoralbio.2010.10.022] [PMID] []
17. Gonçalves ND, Pena FdL, Sartoratto A, Derlamelina C, Duarte MCT, Antunes AEC, et al. Encapsulated thyme (Thymus vulgaris) essential oil used as a natural preservative in bakery product. Food Res Int 2017;96:154-60. [DOI:10.1016/j.foodres.2017.03.006] [PMID]
18. Benameur Q, Gervasi T, Pellizzeri V, Pľuchtová M, Tali-Maama H, Assaous F, et al. Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against bla(ESBL) producing multidrug resistant Enterobacteriaceae isolates. Nat Prod Res 2019;33(18):2647-54. [DOI:10.1080/14786419.2018.1466124] [PMID]
19. Nemati Z, Barzegar R, Khosravinezhad M, Talebi E, Safaei HR. Chemical composition and antioxidant activity of Shirazi Thymus vulgaris essential oil. Future Nat Prod 2018;4(2):26-32. [URL]
20. Al-Asmari A, Athar MT, Al-Faraidy A, Almuhaiza M. Chemical composition of essential oil of Thymus vulgaris collected from Saudi Arabian market. Asian Pac J Trop Biomed 2017;7. [DOI:10.1016/j.apjtb.2016.11.023]
21. Bouguerra N, Fouzia T, Soltani N. Algerian Thymus vulgaris essential oil: chemical composition and larvicidal activity against the mosquito Culex pipiens. Int J Mosq Res 2017;4:37-42. [URL]
22. Guerra-Rosas MI, Morales-Castro J, Ochoa-Martínez LA, Salvia-Trujillo L, Martín-Belloso O. Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids 2016;52:438-46. [DOI:10.1016/j.foodhyd.2015.07.017]
23. Noori S, Zeynali F, Almasi H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018;84:312-20. [DOI:10.1016/j.foodcont.2017.08.015]
24. Wan J, Zhong S, Schwarz P, Chen B, Rao J. Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: Impact of oil compositions and processing parameters. Food Chem 2019;291:199-206. [DOI:10.1016/j.foodchem.2019.04.032] [PMID]
25. da Silva Gündel S, de Souza ME, Quatrin PM, Klein B, Wagner R, Gündel A, et al. Nanoemulsions containing Cymbopogon flexuosus essential oil: Development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities. Microb Pathog 2018;118:268-76. [DOI:10.1016/j.micpath.2018.03.043] [PMID]
26. Sienkiewicz M, Łysakowska M, Denys P, Kowalczyk E. The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microb Drug Resist 2012;18(2):137-48. [DOI:10.1089/mdr.2011.0080] [PMID]
27. Moghimi R, Aliahmadi A, Rafati H. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydr Polym 2017;175:241-8. [DOI:10.1016/j.carbpol.2017.07.086] [PMID]
28. Hamedi H, Moradi S, Tonelli AE, Hudson SM. Preparation and Characterization of Chitosan-Alginate Polyelectrolyte Complexes Loaded with Antibacterial Thyme Oil Nanoemulsions. App Sci 2019; 9(18). [DOI:10.3390/app9183933]
29. Fani M, Kohanteb J. In Vitro Antimicrobial Activity of Thymus vulgaris Essential Oil Against Major Oral Pathogens. J Evid Based Complementary Altern Med 2017;22(4):660-6. [DOI:10.1177/2156587217700772] [PMID] []
30. Rota MC, Herrera A, Martínez RM, Sotomayor JA, Jordán MJ. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008;19(7):681-7. [DOI:10.1016/j.foodcont.2007.07.007]
31. Ultee A, Bennik MH, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 2002;68(4):1561-8. [DOI:10.1128/AEM.68.4.1561-1568.2002] [PMID] []
32. Gavarić N, Smole Možina S, Kladar N, Bozin B. Chemical Profile, Antioxidant and Antibacterial Activity of Thyme and Oregano Essential Oils, Thymol and Carvacrol and Their Possible Synergism. J Essent Oil-Bear Plants 2015;18. [DOI:10.1080/0972060X.2014.971069]
33. Delgado B, Fernández PS, Palop A, Periago PM. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiol 2004;21(3):327-34. [DOI:10.1016/S0740-0020(03)00075-3]
34. Hashemi M, Ehsani A, Hosseini Jazani N, Aliakbarlu J, Mahmoudi R. Chemical composition and in vitro antibacterial activity of essential oil and methanol extract of Echinophora platyloba D.C against some of food-borne pathogenic bacteria. Vet Res Forum 2013;4(2):123-7. [PMID]
35. Aznar A, Fernández PS, Periago PM, Palop A. Antimicrobial activity of nisin, thymol, carvacrol and cymene against growth of Candida lusitaniae. Food Sci Technol Int 2015;21(1):72-9. [DOI:10.1177/1082013213514593] [PMID]
36. Soković M, Glamočlija J, Marin PD, Brkić D, van Griensven LJ. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010;15(11):7532-46. [DOI:10.3390/molecules15117532] [PMID] []
37. Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, et al. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015;20(7):11808-29. [DOI:10.3390/molecules200711808] [PMID] []
38. Al-Bayati FA. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J Ethnopharmacol 2008;116(3):403-6. [DOI:10.1016/j.jep.2007.12.003] [PMID]
39. Kacaniova M, Vukovic N, Hleba L, Bobková A, Pavelková A, Rovná K, et al. Antimicrobial and antiradicals activity of Origanum vulgare L. and Thymus vulgaris essential oils. J Microbiol Biotechnol Food Sci 2012;2:263-71. [Google Scholar]
40. Sadiki M, El Abed S, Farah A, Saad I. characterization and antibacterial activity of the essential oil from thymus vulgaris cultuvated in morocco (taounat) against ten Bacteria. World J Pharmaceut Res 2014;1. [URL]
41. Fahimi S, Hajimehdipoor H, Shabanpoor H, Bagheri F, Shekarchi M. Synergic antibacterial activity of some essential oils from Lamiaceae. Res J Pharmacognosy 2015;2(3):23-9. [Google Scholar]
42. B Burt SA. Antibacterial activity of essential oils: potential applications in food. Utrecht University; 2007 Nov 29. [URL]
43. Ruiz-Gonzalez N, Lopez-Malo A, Palou E, Ramirez-Corona N, Jimenez-Munguia MT. Antimicrobial Activity and Physicochemical Characterization of Oregano, Thyme and Clove Leave Essential Oils, Nonencapsulated and Nanoencapsulated, Using Emulsification. Appl Food Biotech 2019;6(4):237-46. [Google Scholar]
44. Bhargava K, Conti DS, da Rocha SR, Zhang Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol 2015;47:69-73. [DOI:10.1016/j.fm.2014.11.007] [PMID]
45. Zhang Z, Vriesekoop F, Yuan Q, Liang H. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chem 2014;150:307-12. [DOI:10.1016/j.foodchem.2013.10.160] [PMID]
46. Ben Jemaa M, Falleh H, serairi beji R, Neves M, Mejdi S, Isoda H, et al. Nanoencapsulated Thymus capitatus essential oil as natural preservative. Innov Food Sci Emerg Tech 2017;45. [DOI:10.1016/j.ifset.2017.08.017]
47. Bhargava K, Conti DS, da Rocha SRP, Zhang Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol 2015;47:69-73. [DOI:10.1016/j.fm.2014.11.007] [PMID]
48. Landry KS, Chang Y, McClements DJ, McLandsborough L. Effectiveness of a novel spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 on contaminated mung bean and alfalfa seeds. Int J Food Microbiol 2014;187:15-21. [DOI:10.1016/j.ijfoodmicro.2014.06.030] [PMID]
49. Gill AO, Holley RA. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int J Food Microbiol 2006;108(1):1-9. [DOI:10.1016/j.ijfoodmicro.2005.10.009] [PMID]
50. Matan N, Matan N, Ketsa S. Enhanced inhibition of Aspergillus niger on sedge (Lepironia articulata) treated with heat-cured lime oil. J Appl Microbiol 2013;115(2):376-81. [DOI:10.1111/jam.12236] [PMID]
51. Wijesundara NM, Lee SF, Cheng Z, Davidson R, Rupasinghe HPV. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci Rep 2021;11(1):1487. [DOI:10.1038/s41598-020-79713-0] [PMID] []
52. Ryu V, McClements DJ, Corradini MG, McLandsborough L. Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion. Food Chem 2018;245:104-11. [DOI:10.1016/j.foodchem.2017.10.084] [PMID]
53. Nielsen CK, Kjems J, Mygind T, Snabe T, Meyer RL. Effects of Tween 80 on Growth and Biofilm Formation in Laboratory Media. Front Microbiol 2016;7:1878. [DOI:10.3389/fmicb.2016.01878] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb