Ethics code: AUERC/1257


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amedu N O, Abdur-Rahman H A, Obu M. Subchronic Effects of Ethinylestradiol and Levonorgestrel on Hematological Parameters, Cytokine Signaling, and Oxidative Stress in Wistar Rats. Journal of Research in Applied and Basic Medical Sciences 2025; 11 (3) :254-260
URL: http://ijrabms.umsu.ac.ir/article-1-419-en.html
Department of Anatomy, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria , amedunath11@gmail.com
Abstract:   (99 Views)
Background  Ethinylestradiol/levonorgestrel is a widely used contraceptive combination with various formulations and administration regimens. There is a hypothesis that the subchronic use of oral contraceptives containing EE and LNG will alter the blood profile by modifying cytokine signaling pathways and increasing oxidative stress levels, potentially contributing to systemic inflammation. The study aimed to investigate the subchronic effects of EE and LNG on hematological parameters, immune function, and oxidative stress in Wistar rats.
Methods Forty adolescent Wistar rats were divided into four groups (n = 10). The control (Group A) received only distilled water for 21 days. Groups B, C, and D were administered combined oral contraceptives (COC) containing EE and LNG at doses of 0.03 mg/kg and 0.15 mg/kg, respectively, for durations of 7, 14, and 21 days. Blood samples were analyzed using an autohematology analyzer, while plasma was used to determine the levels of SOD, MDA, and IL-1β.
Results EE/LNG exposure (21 days) significantly increased oxidative stress, as evidenced by elevated MDA levels and reduced SOD activity. Furthermore, interleukin-1β levels remained unchanged across all groups. Lastly, transient changes in RBC count, Hb, PCV, and WBC levels were observed, particularly in group B; however, these changes were not sustained or statistically significant, except for PCV recovery.
Conclusion While EE/LNG increases oxidative stress with prolonged use, it shows limited effects on cytokine signaling and blood profiles at the tested durations. Further research is needed to explore broader inflammatory markers and long-term effects.
Full-Text [PDF 352 kb]   (65 Downloads)    
Type of Study: orginal article | Subject: Hematology

References
1. Gurvich C, Nicholls I, Lavale A, Kulkarni J. Oral contraceptives and cognition: A systematic review. Front Neuroendocrinol. 2023;69:101052. [DOI:10.1016/j.yfrne.2022.101052] [PMID]
2. Quinn KM, Roberts L, Cox AJ, Borg DN, Pennell EN, McKeating DR, et al. Blood oxidative stress biomarkers in women: influence of oral contraception, exercise, and N-acetylcysteine. Eur J Appl Physiol. 2022;122(8):1949-64. [DOI:10.1007/s00421-022-04964-w] [PMID] [PMCID]
3. Tekle E, Gelaw Y, Asrie F. Hematological Profile Changes Among Oral Contraceptive Users: A Narrative Review. J Blood Med. 2022;13:525-36. [DOI:10.2147/JBM.S379841] [PMID] [PMCID]
4. Zotz RB, Kloeckner S, Scharf RE, Gerhardt A. Interaction Between Oral Contraceptive Use and Coagulation Factor Levels in Deep Vein Thrombosis. American Society of Hematology; 2008. 112(11): 4530-4530 [DOI:10.1182/blood.V112.11.4530.4530]
5. Edwards MR, Dai R, Heid B, Cowan C, Werre SR, Cecere T, et al. Low-dose 17α-ethinyl estradiol (EE) exposure exacerbates lupus renal disease and modulates immune responses to TLR7/9 agonists in genetically autoimmune-prone mice. Sci Rep. 2020;10(1):5210. [DOI:10.1038/s41598-020-62124-6] [PMID] [PMCID]
6. Khalili H. Risk of Inflammatory Bowel Disease with Oral Contraceptives and Menopausal Hormone Therapy: Current Evidence and Future Directions. Drug Saf. 2016;39(3):193-7. [DOI:10.1007/s40264-015-0372-y] [PMID] [PMCID]
7. Osman NN, Al-mutairi DM. Effect of oral contraceptive pills on oxidative stress in Saudi women. Journal of Contemporary Medical Sciences. 2021;7(2). [DOI:10.22317/jcms.v7i2.956]
8. Cauci S, Xodo S, Buligan C, Colaninno C, Barbina M, Barbina G, et al. Oxidative stress is increased in combined oral contraceptives users and is positively associated with high-sensitivity C-reactive protein. Molecules. 2021;26(4):1070. [DOI:10.3390/molecules26041070] [PMID] [PMCID]
9. Kuhnz W, Staks T, Jütting G. Pharmacokinetics of levonorgestrel and ethinylestradiol in 14 women during three months of treatment with a tri-step combination oral contraceptive: serum protein binding of levonorgestrel and influence of treatment on free and total testosterone levels in the serum. Contraception. 1994;50(6):563-79. [DOI:10.1016/0010-7824(94)90014-0] [PMID]
10. Xin X, Wu Y, Liu X, Sun C, Geng T, Ding L. Pharmacokinetics of oral combination contraceptive drugs containing ethinyl estradiol and levonorgestrel in healthy female Chinese volunteers. Drug Research. 2016;66(02):100-6. [DOI:10.1055/s-0035-1554631] [PMID]
11. Andozia MB, Vieira CS, Franceschini SA, Tolloi MRT, de Sá MFS, Ferriani RA. Ethinylestradiol and estradiol have different effects on oxidative stress and nitric oxide synthesis in human endothelial cell cultures. Fertility and sterility. 2010;94(5):1578-82. [DOI:10.1016/j.fertnstert.2009.08.052] [PMID]
12. Omsjø IH, øian P, Maltau JM, østerud B, øian P. Effects of two triphasic oral contraceptives containing ethinylestradiol plus levonorgestrel or gestodene on blood coagulation and fibrinolysis. Acta obstetricia et gynecologica Scandinavica. 1989;68(1):27-30. [DOI:10.3109/00016348909087684] [PMID]
13. Jones‐Bolin S. Guidelines for the care and use of laboratory animals in biomedical research. Current Protocols in Pharmacology. 2012;59(1):A. 4B. 1-A. 4B. 9. [DOI:10.1002/0471141755.pha04bs59] [PMID]
14. Amedu NO, Omotoso GO. Evaluating the role of vitexin on hematologic and oxidative stress markers in lead-induced toxicity in mice. Toxicology and Environmental Health Sciences. 2020;12(3):257-63. [DOI:10.1007/s13530-020-00039-5]
15. Fajrilah BR, Indrayani UD, Djamà Q. The Effect of Honey on Plasma Malondialdehyde (MDA) Level onAlloxan-Induced hyperglycemic Rats An Experimental studies in rats Galur Wistar White Males. Sains Medika: Jurnal Kedokteran dan Kesehatan. 2013;5(2):98-100. [DOI:10.30659/sainsmed.v5i2.348]
16. 1Aekthammarat D, Pannangpetch P, Tangsucharit P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine. 2019;54:9-16. [DOI:10.1016/j.phymed.2018.10.023] [PMID]
17. Widowati W, Wargasetia TL, Rahardja F, Gunanegara RF, Priyandoko D, Gondokesumo ME, et al. Human Wharton's jelly mesenchymal stem cells inhibit cytokine storm in acute respiratory distress syndrome in a rat model. Asian Pacific Journal of Tropical Biomedicine. 2022;12(8):343-50. [DOI:10.4103/2221-1691.350182]
18. Amedu N, Omotoso G. Vitexin increases motor coordination and balance in mice after exposure to lead acetate. IBRO Reports. 2019;7:12. [DOI:10.1016/j.ibror.2019.09.029]
19. Obeagu EI, Igwe MC, Obeagu GU. Oxidative stress's impact on red blood cells: Unveiling implications for health and disease. Medicine. 2024;103(9):e37360. [DOI:10.1097/MD.0000000000037360] [PMID] [PMCID]
20. Sugumar D, Saravanan J, Emdormi R, Praveen T. An update on the role of Nrf2 and its activators in diseases associated with oxidative stress. Indian Journal of Pharmaceutical Sciences. 2020;82(2):184-92. [DOI:10.36468/pharmaceutical-sciences.638]
21. Pandey KB, Rizvi SI. Biomarkers of oxidative stress in red blood cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(2):131-6. [DOI:10.5507/bp.2011.027] [PMID]
22. Amer J, Frankenburg S, Fibach E. Apheresis induces oxidative stress in blood cells. Therapeutic Apheresis and Dialysis. 2010;14(2):166-71. [DOI:10.1111/j.1744-9987.2009.00746.x] [PMID]
23. Berakdar N, Alahmad A. Review of oxidative stress and antioxidative. J Clin Diagn Res. 2022;16(5):BE01-BE6. [Google Scholar]
24. El Haouari M. Platelet oxidative stress and its relationship with cardiovascular diseases in type 2 diabetes mellitus patients. Current medicinal chemistry. 2019;26(22):4145-65. [DOI:10.2174/0929867324666171005114456] [PMID]
25. Chmielewski PP, Strzelec B. Elevated leukocyte count as a harbinger of systemic inflammation, disease progression, and poor prognosis: a review. Folia morphologica. 2018;77(2):171-8. [DOI:10.5603/FM.a2017.0101] [PMID]
26. Yu BP, Chung HY. Adaptive mechanisms to oxidative stress during aging. Mechanisms of ageing and development. 2006;127(5):436-43. [DOI:10.1016/j.mad.2006.01.023] [PMID]
27. Lushchak VI. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2011;153(2):175-90. [DOI:10.1016/j.cbpc.2010.10.004] [PMID]
28. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Current biology. 2014;24(10):R453-R62. [DOI:10.1016/j.cub.2014.03.034] [PMID] [PMCID]
29. Michel F, Bonnefont-Rousselot D, Mas E, Drai J, Thérond P, editors. Biomarkers of lipid peroxidation: analytical aspects. Annales de biologie clinique; 2008;66(6): 605-620. [Google Scholar]
30. Amedu NO, Omotoso GO. Lead acetate-induced neurodegenerative changes in the dorsolateral prefrontal cortex of mice: the role of Vitexin. Environmental Analysis, Health and Toxicology. 2020;35(1):e2020001. [DOI:10.5620/eaht.e2020001] [PMID] [PMCID]
31. Chen JT, Kotani K. Oral contraceptive therapy increases oxidative stress in pre-menopausal women. International journal of preventive medicine. 2012;3(12):893. [DOI:10.4103/2008-7802.104862] [PMID] [PMCID]
32. Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019;8(3):72. [DOI:10.3390/antiox8030072] [PMID] [PMCID]
33. Ishihara Y, Shimamoto N. Critical role of exposure time to endogenous oxidative stress in hepatocyte apoptosis. Redox Report. 2007;12(6):275-81. [DOI:10.1179/135100007X200362] [PMID]
34. Aztatzi-Aguilar O, Valdés-Arzate A, Debray-García Y, Calderón-Aranda E, Uribe-Ramirez M, Acosta-Saavedra L, et al. Exposure to ambient particulate matter induces oxidative stress in lung and aorta in a size-and time-dependent manner in rats. Toxicology Research and Application. 2018;2:1-15. [DOI:10.1177/2397847318794859]
35. Lopez-Castejon G, Brough D. Understanding the mechanism of IL-1β secretion. Cytokine & growth factor reviews. 2011;22(4):189-95. [DOI:10.1016/j.cytogfr.2011.10.001] [PMID] [PMCID]
36. Maedler K, Dharmadhikari G, Schumann DM, Størling J. Interleukin-targeted therapy for metabolic syndrome and type 2 diabetes. Diabetes-Perspectives in Drug Therapy. 2011:257-78. [DOI:10.1007/978-3-642-17214-4_11] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb