Unveiling the Complexity of Campylobacter Bacteremia

Mythilipraba Sambasivam¹, Hyma Kooleri Padinjare Veetil¹, Kamini Mariyappan², Pratap Upadhya², Apurba Sankar Sastry¹, Benedict Vinothini¹

Published: 15 August 2025 © The Author(s) 2025

Abstract

Campylobacter coli is a fastidious gram-negative rod that often causes gastroenteritis but may sometimes cause bacteremia. Campylobacter is the largest cause of infectious diarrhea and a major contributor to foodborne diseases globally. Campylobacter infection is typically spread by the eating of contaminated food, particularly raw meat, or untreated water; contact with infected animals or polluted settings; and poultry is the principal reservoir and source of human transmission. The clinical spectrum of Campylobacter coli infection is divided into two categories: gastrointestinal and extraintestinal symptoms. Later consequences include reactive arthritis, Guillain-Barré syndrome, and Miller-Fisher syndrome. Isolation and identification of the organism are critical, since early treatment may avert significant problems. Because regular biochemical identification is difficult due to the organism's fastidious character, automated technologies may assist in identification, allowing proper treatment. We present the case of an olderly diabetic male who acquired Campylobacter bacteremia without antecedent diarrhea and recovered with pathogentargeted treatment.

Keywords Automated systems, Bacteremia, Campylobacter coli, Identification, Immunocompromised

Benedict Vinothini drbenedictvinothini@gmail.com

Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India.

Department of Pulmonary Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India.

1 Introduction

Campylobacter species are slender, spirally curved, nonsporing, gram-negative rods.[1] Campylobacter jejuni and Campylobacter coli are the most clinically relevant species as they are responsible for around 90% of Campylobacter infections.[2] Campylobacteriosis is estimated to affect 400-500 million people annually, making it a leading cause of bacterial diarrhea.[3] A range of clinical manifestations, from asymptomatic to severe invasive disease conditions, can also result from it. Bacteremia is uncommon and frequently linked to a number of immunodeficient diseases, despite Campylobacter gastroenteritis being the most prevalent presentation. [4] It requires high clinical suspicion for diagnosis since it is rare and can present without underlying diarrhea. [1] According to studies, the isolation of Campylobacter species from blood culture ranges from 0.15 - 0.24%. [5,6] Although it is a treatable disease, it causes serious health implications if not treated. Hence, prompt identification of the bacteria plays a very important role. With advancements in diagnostics and automated systems, rare cases of Campylobacter bacteremia are increasingly identified from different clinical settings. Here, we discuss a case of Campylobacter coli bacteremia in an elderly diabetic patient.

Case history

An 84-year-old male with bilateral distal femoral fracture, treated conservatively with bilateral aboveknee slab and bedridden for 20 days, presented to the Orthopaedics OPD for follow-up. He was referred to the emergency department with complaints of mild difficulty in breathing. All vital signs were stable except for the mild desaturation of oxygen (86%) in room air. He had complaints of difficulty in breathing for the past two days with MMRC (Modified Medical Research Council dyspnoea scale) Grade 4, along with orthopnoea and cough with expectoration. He had no other respiratory, cardiac, or gastric complaints. He was a known case of type 2 diabetes mellitus and systemic hypertension on medication for the past 20 years. He was also a known case of adrenal adenoma. He was a non-smoker and had never consumed alcohol. On physical examination, penile and scrotal edema were noted. Complete haemogram done at the time of admission was not deranged. The USG of the leg revealed bilateral popliteal deep vein thrombosis (DVT). Anticoagulants were started in view of elevated D-dimer levels and DVT. Two days later, the patient developed an acute drop in Glasgow coma scale (GCS) and ketoacidosis, after which he was empirically started on Piperacillin-tazobactam intravenous injection 4.5 g every eight hours after sending urine, blood, and endotracheal tube aspirate samples for culture.

Two aerobic blood culture bottles (10 ml blood per bottle) were collected from two peripheral veins and incubated in the BACTEC system. One of the blood culture bottles flagged positive with a turnaround time of 40 hours. It was subcultured onto 5% sheep blood agar and MacConkey agar and incubated for 18 hours, aerobically. A smear was made from the broth and gram-

negative curved rods were identified. Blood agar showed 1-2 mm, moist, translucent, non-hemolytic colonies as shown in Figure 1. Growth was not seen in MacConkey agar. The isolate was identified as *Campylobacter coli* by MALDI-TOF MS (BioMérieux). The colony smear was done from the plate which showed uniformly stained, slightly curved, gram-negative rods, with parallel edges and rounded ends, as shown in Figure 2.

Figure 1 Colonies of *Campylobacter* seen on 5% sheep blood agar

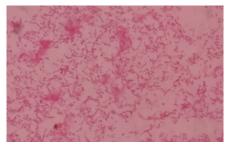


Figure 2 Gram stain of Campylobacter coli

He was started on Azithromycin 500 mg once daily for *Campylobacter* bacteremia. Patient improved symptomatically after treatment and the follow up blood cultures sent were sterile.

2 Discussion

Campylobacter coli are gram-negative fastidious rods. They are positive for oxidase and catalase. Over the decade, Campylobacter species have become more prevalent with a dramatic rise in North America, Europe, and Australia. In India, a hospital in Kolkata reported 7% of Campylobacter species in patients with gastroenteritis. [7] According to a study conducted in Vellore, South India, 4.5% of children with diarrhea under the age of five tested positive for Campylobacter jejuni and Campylobacter coli using PCR. It is typically linked to elderly or immunocompromised people who also have additional co-morbidities such as cancer, splenectomy, or liver cirrhosis. If treatment is not received within 30 days of a positive blood culture, there is a 15% likelihood of death. [8]

Contrary to a common belief, fever and gastrointestinal symptoms are not the preceding symptoms of *Campylobacter* bacteraemia.^[9] Cases of meningitis, cellulitis, reactive arthritis, and catheter-related bloodstream infections have been reported. In our case, the patient presented with an atypical presentation,

Page 3 of 4 Sambasivam et al.

characterized by fever without associated gastrointestinal symptoms. Scrotal swelling was seen in our patient which may have been an atypical presentation of bacteremia. A similar clinical picture was seen in an elderly cirrhotic patient with *Campylobacter* infection. [10] In this case, the age of the patient and comorbidities like diabetes and hypertension can be considered as risk factors.

A routine blood culture is missed in many cases because of low clinical suspicion, as it is a less commonly isolated pathogen and bacteremia can occur without prior gastroenteritis. The possibility of isolating Campylobacter coli in the blood increases if adequate samples from different sites are collected in early stages by a skilled phlebotomist with asepsis, as in our case. Since it is a slow-growing bacterium, it also requires an extended period of incubation. In a study conducted in Denver, it was seen that the growth rates of Campylobacter coli were slightly higher than those of Campylobacter jejuni.[11] Campylobacter species, being non-saccharolytic, microaerophilic, and thermophilic, could easily be missed in a routine blood culture media setup. The use of automated systems like BACTEC and MALDI-TOF has a higher chance of identifying this rare organism, as conventional biochemical identification is challenging.

Since it is a treatable infection, timely diagnosis is essential for the initiation of antibiotic treatment. With automated systems, we were able to identify the causative agent and treat the patient with appropriate antibiotics. Immunocompromised individuals may require additional antibiotic therapy for better outcomes.

3 Conclusion

Campylobacter coli is a rare organism causing bacteremia which requires high clinical suspicion and aseptic sample collection with adequate volume for isolation. Early identification using an automated system and prompt treatment can aid in better clinical outcomes.

Declarations

Acknowledgments

Not applicable.

Artificial Intelligence Disclosure

The authors confirm that no artificial intelligence (AI) tools were used in the preparation of this manuscript.

Authors' Contributions

Mythilipraba Sambasivam was responsible for writing the manuscript. Hyma Kooleri Padinjare Veetil and Benedict Vinothini contributed to reviewing and editing the manuscript. Kamini Mariyappan conducted data collection, while Pratap Upadhya and Apurba Sankar Sastry supervised the project's progress and provided overall guidance.

Availability of Data and Materials

The data analyzed are available in the medical records department, JIPMER, India.

Conflict of Interest

The authors declare no conflict of interest.

U_{Press}

Consent for Publication

Not applicable.

Ethical Considerations

Written informed consent was obtained from the patient for publication of this case report and any accompanying images [Ethical code: JIP/IEC/2021/256]

Funding

No funding was required for this study.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by-nc/4.0.

References

- Adrianza A, Pourfarrokh N, Choi H, Hwang M, Lukey J, Jinadatha C, et al. Campylobacter coli bacteremia associated with diarrhea. IDCases. 2023;31:e01734.
- Humphrey T, O'Brien S, Madsen M. Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol. 2007;117(3):237–57.
- Igwaran A, Okoh AI. Human campylobacteriosis: A public health concern of global importance. Heliyon. 2019;5(11):e02814.
- Afzal F, Kumar A, Nag S, Sahu C, Malay Ghar, Prasad KN. Campylobacter coli Bacteremia In A Young Girl of Chronic Budd-Chiari Syndrome: First Case Report From India. Global Journal For Research Analysis. 2017;6(5).
- Skirrow MB, Jones DM, Sutcliff E, Benjamin J. Campylobacter bacteraemia in England and Wales, 1981–91. Epidemiol Infect. 1993;110(3):567-73.
- Fernández-Cruz A, Muñoz P, Mohedano R, Valerio M, Marín M, Alcalá L, et al. Campylobacter bacteremia: clinical characteristics, incidence, and outcome over 23 years. Medicine (Baltimore). 2010;89(5):319–30.
- Mukherjee P, Ramamurthy T, Bhattacharya MK, Rajendran K, Mukhopadhyay AK. Campylobacter jejuni in Hospitalized Patients With Diarrhea, Kolkata, India. Emerg Infect Dis. 2013;19(7):1155-6.
- Rajendran P, Babji S, George AT, Rajan DP, Kang G et al. Detection and Species Identification of Campylobacter in Stool Samples of Children and Animals From Vellore, South India. Indian J Med Microbiol. 2012;30:85–88.
- Yoon JG, Lee SN, Hyun HJ, Choi MJ, Jeon JH, Jung E, et al. Campylobacter jejuni Bacteremia in a Liver Cirrhosis Patient and Review of Literature: A Case Study. Infection & Chemotherapy. [Internet]. 2017;49(3):230–5.
- Sindhura Pisipati, Zafar A, Zafar Y. Campylobacter colibacteraemia: how common is it?. BMJ Case Rep. 2020;13(12):e236634-4.

 Wang WL, Blaser MJ. Detection of pathogenic Campylobacter species in blood culture systems. J Clin Microbiol. 1986;23(4):709–14.