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Abstract 
Background & Aims:  The active site of RdRp-CoV is highly conserved, with two successive and surface-accessible aspartates in a 

beta-turn structure. Antiviral drugs Remdesivir, Galidesivir, Tenofovir, Sofosbuvir, and Ribavirin are known as inhibitors of RdRps, 

while lopinavir and rotinavir are known inhibitors of main protease (MPro) of coronavirus. The aim of the present study was to in silico 

test of the effectiveness of anti-polymerase drugs against SARS-CoV-2 RdRp, including 5 FDA-approved antiviral medications. 

Materials & Methods:  RdRp-CoV (nsp12) plays an important role in virus replication; therefore, it serves as a target to development 

of antiviral drugs. In this study, the RdRp is modeled, validated, and then targeted using different anti-polymerase drugs that approved 

for use against various viruses. 

Results:  The five approved drugs (Galidesivir, Remdesivir, Tenofovir, Sofosbuvir, and Ribavirin) were able to bind the SARS-CoV-

2 RdRp with binding energies of 42.6, 1.7, 38.4, -1.4, and -3.9 kcal/mol, respectively. For the drug ribavirin, the only interactions 

established upon docking were the 11 H-bonds with F165, N459, R624, P677, N791, L460, N791, T462, N628, and T462 of the SARS-

CoV-2 RdRp. 

Conclusion:  The results suggest the effectiveness of Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir as potent drugs 

against RdRp-CoV since they tightly bind to RdRp. The availability of FDA-approved anti-RdRp drugs can help treat the infection of 

new variant of SARS-CoV-2 strain specifically.  
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Introduction  
In December 2019, a rapid outbreak of a novel 

coronavirus designated as COVID-19, reported from 
the city of Wuhan, China (1–2). On January 30, 2020, 
World Health Organization (WHO) declared that the 
outbreak of novel coronavirus (2019-nCoV) 
constitutes a Public Health Emergency of 
International Concern (PHEIC) (3-4). The current 
pandemic caused by the nCoV-2019 has reached 
nearly all the countries of the world (5), and on WHO 
dashboard, 664,618,938 confirmed cases of COVID-
19 with more than 6,722,949 deaths reported till 24 
January 2023. The two strains of SARS have been 
identified that cause epidemics: (1) SARS-CoV, 
identified in 2002–2004, and (2) novel coronavirus 
(SARS-CoV-2), that emerged as a potential threat in 
late 2019 (6). The symptoms of COVID-19 include 
fever, malaise, dry cough, shortness of breath, and 
respiratory distress (7-8). 

Severe Acute Respiratory Syndrome Coronavirus 
(SARS-CoV) is a positive-sense single-stranded RNA 
(30,000 bp) virus from the genus Betacoronavirus, 
commonly known to infect bats, humans, and other 
mammals (9-10). 

Genome of SARS-CoV contains 5′ and 3′ 
untranslated regions (UTR’s) for characteristic genes 
coding for spike (S) marking all coronaviruses, 
nucleocapsid (N), matrix (M), and envelope (E), and 
non-structural proteins, such as proteases (nsp3 and 
nsp5) and RdRp (nsp12) (11-13). RdRP (nsp12) plays 
an important role in virus replication by serving as the 
target site for antiviral drugs (14). RdRp is a 
conserved enzymatic protein within RNA viruses, and 
thus could be used as a target to development of 
antiviral drugs (15-16). The active site of RdRp is 
highly conserved with two successive and surface-
accessible aspartates in a beta-turn structure (17-19). 

Antiviral drugs remdesivir, galidesivir, tenofovir, 
sofosbuvir, and ribavirin are known inhibitors of 
RdRps (20-21), while lopinavir and rotinavir are 
known inhibitors of main protease (MPro) of 
coronavirus (22-23).   

Presently, there is no effective and specific drug 
available for the treatment of COVID-19, except 
remdesivir and favipiravir which are successful up to 
some extent. In this study, the SARS-CoV-2 RdRp 
model was built using the SARS RdRp solved 
structures from the NCBI and protein data bank 
(PDB) (24). 

The homology modeling and docking was 
performed to test the effectiveness of anti-polymerase 
drugs against SARS-CoV-2 RdRp, including 5 FDA-
approved medications used for the treatment of HCV, 
HIV, and the Ebola virus (25-26).  

The results were implied that the currently 
available treatments may be able to effectively 
suppress the newly emerged coronavirus (27). 

 
Materials & Methods 

Sequence alignment and homology modeling: 
The RNA-dependent RNA polymerase (RdRp) 

sequence of SARS-CoV-2 (YP_009725307) was 
retrieved from the NCBI database (28). A homology 
model for the SARS-CoV-2 RdRp was built using the 
Swiss Model web server (29). The SARS-CoV-2 
RdRp (PDB ID: 7UO9) was employed as a template 
for building homology model since it was the most 
sequelogous solved structure (97.08% sequence 
identity) to SARS-CoV-2 RdRp. 7UO9 is a SARS-
CoV-2 replication-transcription complex bound to 
UTP (cryo-electron microscopy) with 3.13 Å 
resolution. 

The Structure Analysis and Verification Server 
(SAVES) server was used to examine the model (30). 
Various types of software were used for validation of 
the model e.g., PROCHECK (31), Verify 3D (32), 
and ERRAT (33), in addition to the Ramachandran 
plot of the MolProbity web server. MolProbity is a 
widely used system of model validation for protein 
and nucleic acid structures (34-35). Model 
minimization was performed after the addition of 
missed hydrogen atoms to prepare for the docking 
study (41). ProSA server was used to determine the 
potential errors in the 3D model (36). 
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Molecular Docking: 
SeamDock software (https://bioserv.rpbs.univ-

paris-diderot.fr/) was utilized in all the docking 
experiments, with the optimized SARS-CoV-2 RdRp 
model as the docking target (37). In addition, SARS-
CoV-2 replication-transcription complex (PDB ID: 
7uo9) was used as docking targets for comparison. A 
total of 5 compounds were tested against SARS-CoV-
2 RdRp (YP_009725307) and its homologous RdRp 
(7UO9), five approved drugs against different viral 
RdRps (Galidesivir, Remdesivir, Tenofovir, 
Sofosbuvir, and Ribavirin). All the compounds were 
prepared to be optimized in their active forms in 
physiological conditions. 

   
Results 

SARS-CoV-2 RdRp Modeling: 
The SARS-CoV-2 RdRp model (932 residues) 

was generated by homology modeling using the Swiss 
Model web server. The SARS-CoV-2 replication-
transcription complex (PDB ID: 7UO9) was 
employed as a template. 

The Swiss model created a high-quality model 
based on the sequence identity between the SARS-
CoV-2 RdRp and 7UO9. 
Protein Model Building: 

The sequence alignment between the target and 
template was performed using BLASTp against PDB 
database (38). The 3D ribbon model of SARS-CoV-2 
RdRp (YP_009725307) generated using SWISS-
MODEL (https://swissmodel.expasy.org) structure 
assessment tool (Figure 1). 

 

Fig. 1. The 3D ribbon structure model of SARS-CoV-2 RdRp (YP_009725307) 
 

Model Reputation: 
The SARS-CoV-2 RdRp (YP_009725307) model 

corresponding to probability confirmation with 
89.2% residue of the core section, 10.4% of the 
allowed section, and 0.4 % residue of the outer section 
in the Ramachandran plot (39) (Figure 2a, b). The 
above results indicated the reliability of protein 
models (Table 1) (35, 36). 

The model exhibited a very high (97.08%) 
sequence identity to the template, suggesting that an 
excellent model was obtained. Testing of the model 
validity was mediated by the Ramachandran plot 
(89.2 % in the core region), Verify-3D (89.52% of the 
residues have averaged 3D-1D score >= 0.2), and 
ERRAT (overall quality factor of 91.38 %) (Table 1). 

Table 1. Evaluation of the protein model by PROCHECK, VERIFY-3D, and ERRAT 

Template 
PROCHECK Verify-3D ERRAT 

Core Allowed 
Generously 

outer 
Disallowed 

3D-ID 
Score 

Overall Quality Factor 

RdRp 
(YP_009725307) 

89.2% 10.4% 0.4 % 0.1 % 89.52 91.38 

7uo9 87.6% 12.2% 0.2% 0.0% 78.18 90.63 
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(a) 
(b) 

Fig. 2. The Ramachandran plot of SARS-CoV-2 RdRp (YP_009725307) - (a) The total number of residues was 
89.2% in the core, 10.4% in the allowed, and 0.4 % in the generously allowed regions; (b) Ramachandran plot of 
SARS-CoV-2 replication-transcription complex (7UO9) – The total number of residues was 87.6% in the core, 

12.2% in the allowed, and 0.2 % in the generously allowed regions. 
 
The verify-3D illustrates the compatibility of an 
atomic model (3D) with its amino acid sequence (1D) 
by assigning a structural class based on its location 
and environment (alpha, beta, loop, polar, and 
nonpolar) (Table 1) (40). 
ERRAT analyses the statistics of non-bonded 

interactions between different atom types and plots 
the value of the error function versus position, which 
is calculated by comparison with statistics from 
highly refined structures (41). ERRAT overall quality 
factor of the model was 91.3813, with an average 
probability value of 5.05729 (Figure 3). 

 

Fig. 3. ERRAT result showing an overall quality factor of 91.3813 for the model (error-axis showing the error 
values to reject regions that exceed the error value). 
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The individual components of MolProbity results 
including Clash score, Rotalyze, c-beta dev, bad 
contact, and angles are also separately available 
through the Phenix command line (Table 2). 

MolProbity allows selection of any combination of 
clashes, hydrogen bonds, and Van der Waals contacts 
to calculate and display on the structure (42). 

 
Table 2. MolProbity results of SARS-CoV-2 RdRp (YP_009725307) 
MolProbity parameters Result Residues 

MolProbity Score 0.93 - 

Clash Score 0.34 (A726 ARG-A729 GLU), (A291 ASP- A735 ARG) 

Rotamer Outliers 0.24% A790 ASN, A468 GLN 

C-Beta Deviations 7 A161 ASP, A77 PHE, A63 ASP, A377 ASP, A362 HIS, A531 

THR, A824 ASP 

Bad Bonds 1 /7652 A790 ASN 

Bad Angles 65 / 10385 - 

Cis Prolines 1 / 30 (A504 PHE-A505 PRO) 

 
The QMEANDisCo Global value of 0.89 ± 0.05 was 
observed for the SARS-CoV-2 RdRp 
(YP_009725307), which is very close to 0 and 
therefore an acceptable value (43). Assessed validity 
of the model predictable among 0 and 1, which could 

be concluded from the density plot locus set for 
QMEAN score (Figure 4). Figure 4 illustrates the 
QMEAN scores for the biological unit reference set, 
which were used as a tool for oligomeric protein 
assessment. 

 
  

Fig. 4. QMEAN scores for a biological unit reference set of SARS-CoV-2 RdRp (YP_009725307). (a) Plot 
showing Z-score; (b) Local quality model for estimation of local summarily to target. 

 
Validation of the Model: 
ProSA was used to determine the potential errors in 
the 3D model of SARS-CoV-2 RdRp 

(YP_009725307) (44). The archived ProSA Z-score 
of -13 indicates two aspects: overall model quality 
and energy deviation (Figure 5). 

 



 Analysis the Effectiveness of Remdesivir, Galidesivir, Sofosbuvir, Tenofovir and Ribavirin as Potential Therapeutic Drug target            Rajneesh Prajapat, et al 

 

148 

 
(a) 

(b) 
Fig. 5. ProSA examination of SARS-CoV-2 RdRp (YP_009725307) overall model quality. (a) The blue dot in the plot 
shows the -13 z-score of predicted models; (b) The residue score plot shows energies of amino acids are less than zero, 

which represents good local model quality. 
 
Molecular Docking: 

The binding pockets of SARS-CoV-2 RdRp 
(YP_009725307) are still not reported. Hence, the in-
silico approaches were used for the prediction of binding 
pockets. The SeamDock docking server was used to 

explore the binding of ligands to the respective protein. 
The top five docking models of binding pockets of 
SARS-CoV-2 RdRp (YP_009725307) were identified 
and ranked based on the energy. More negative docking 
scores indicated higher binding affinity (Table 4). The 
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summary table contains two rows: the ranks and docking 
energy scores from the input structures. Model 1 has 
high accuracy with an interface docking score of 42.6 
kcal/mol from the crystal structure (Table 3). 

The binding pocket and interacting residues of the 
selected inhibitor Remdesivir was analyzed in 3D using 
SeamDock docking server (Figure 6). 

 

Fig. 6. Binding pocket and interacting residues of the analyzed inhibitor Remdesivir using SeamDock docking 
server. 

 
The binding residues of the cavities were explored 

for the fruitful binding of novel ligands. The energy 
range of predicted cavities also indicated the efficacy of 
pockets. The mutational study of binding residues 
suggested that these residues could be used as a clinical 

prospectus for the effective treatment of COVID-19. 
The predicted binding residues lead to the drug 
designing of lead compounds against SARS-CoV-2 
RdRp. 

 

 
 

Fig. 7. Binding pocket and interacting residues of the analyzed inhibitor (a) Galidesivir, (b) Sofosbuvir using 

SeamDock docking server 

 

  
Fig. 8. Binding pocket and interacting residues of the analyzed inhibitor (a) Tenofovir, (b) Ribavirin using SeamDock 

docking server. 
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Table 3. Docking Results of receptor SARS-CoV-2 RdRp (YP_009725307) with ligand Remdesivir, Galidesivir, 
Sofosbuvir, Tenofovir and Ribavirin 
                                                                  SARS-CoV-2 RdRp (YP_009725307) Docking Interaction                      

REMDESIVIR GALIDESIVIR SOFOSBUVIR TENOFOVIR RIBAVIRIN 
Hydrophobic Contact Ionic Interaction Hydrophobic Contact Hydrophobic Contact Ionic Interaction 

Ligand 
atom 

Receptor Ligand 
atom 

Receptor Ligand 
atom 

Receptor Ligand 
atom 

Receptor Ligand 
atom 

Receptor 

C23 V315(A) CB N1 D760(A) OD1 C19 V315(A)CG1 C4 P461(A) CB N1 D760(A) OD1 
C27 V315(A) CG1 N5 D623(A) OD1 C9 Y458(A) CB   N4 D618(A) OD1 
C26 
C16 
C26 
C22 

E350(A) CG 
L460(A) CD2 
N628(A) CB 
P677(A) CB 

  C5 
C12 
C9 
C18 
C15 

N459(A) CB 
P461(A) CB 
A625(A) CB 
P627(A) CB 
N628(A) CB 

    

C8 N791(A) CB   C9 N791(A) CB     
    C9 V792(A)CG2     

Hydrogen Bond Hydrogen Bond Hydrogen Bond Hydrogen Bond Hydrogen Bond 
Ligand 
atom 

Receptor Ligand 
atom 

Receptor Ligand 
atom 

Receptor Ligand 
atom 

Receptor Ligand 
atom 

Receptor 

N6 F165(A) O O2 P620(A) O N3 N459(A) O O4 N459(A) O O5 D618(A) OD2 
O6 N459(A) OD1 O1 D623(A) OD1 O2 T462(A) OG1 N2 L460(A) O N3 Y619(A) O 
N3 
O2 
O8 
N1 

N459(A) OD1 
R624(A) O 
P677(A) O 
N791(A) O 

N4 
N5 
N4 
N4 

T680(A) OG1 
T687(A) OG1 
T680(A) OG1 
N691(A) ND2 

N3 
O1 
O2 

P677(A) O 
L460(A) N 
T462(A) OG1 

N5 
N2 

T462(A) O 
N628(A) N 

O2 
O4 
O2 
O2 

D623(A) OD1 
D760(A) OD1 
R555(A) NH1 
R555(A) NH2 

O1 L460(A) N         

O1 N791(A) ND2         

O4 T462(A) OG1         

O6 N628(A) N         

O5 T462(A) N         

Weak Hydrogen Bond Weak Hydrogen Bond Weak Hydrogen Bond Weak Hydrogen Bond Weak Hydrogen Bond 
Ligand 
atom 

Receptor Ligand 
atom 

Receptor Ligand 
atom 

Receptor Ligand 
atom 

Receptor Ligand 
atom 

Receptor 

C2 Y458(A) O C11 N691(A) OD1 C8 A625(A) O C6 N459(A) OD1 C8 D618(A) OD2 
C12 N459(A) OD1 N2 S682(A) CB C3 N790(A) O C6 L460(A) O C5 D760(A) OD2 
C18 C6 
C9 
C11 

N459(A) OD1 
N459(A) OD1 
N791(A) O 
N791(A) O 

O1 K621(A) CA C8 
C10 
O6 

N790(A) O 
N791(A) O 
G678(A) CA 

C6 
C2 
N2 
O3 

N628(A) OD1 
P677(A) O 
P627(A) CA 
P461(A) CD 

C6 
C7 
O3 
O4 

D760(A) OD2 
D760(A) OD2 
S682(A) CB 
S759(A) CB 

C13 N791(A) O         

O2 A625(A) CA         

O4 P627(A) CA         

O6 P627(A) CA         

O5 P461(A) CA         

 
Table 4. Docking affinity scores - kcal/mol 

Docking Score - affinity (kcal/mol) 
Remdesivir Galidesivir Sofosbuvir Tenofovir Ribavirin 

42.6 1.7 38.4 - 1.4 - 3.9 

 
The binding pocket and interacting residues of the selected inhibitors were analyzed (Table 3; Figures 6 to 8).  
 

 
Discussion 

The five approved drugs (Galidesivir, Remdesivir, 
Tenofovir, Sofosbuvir, and Ribavirin) surrounded by the 
yellow-green globular structure (Figures 6 to 8), are able 
to bind the SARS-CoV-2 RdRp with binding energies of 
42.6, 1.7, 38.4, -1.4, and -3.9 kcal/mol, respectively 
(Table 4).  

These drugs were able to bind to the new coronavirus 
strain RdRp tightly, and hence may contradict the 

polymerase function. For the approved drug ribavirin, 
the interactions established upon docking were the 11 H-
bonds with F165, N459, R624, P677, N791, L460, 
N791, T462, N628, and T462 of the SARS-CoV-2 
RdRp. The same pattern was found for Galidesivir, but 
with a reduced number of H-bonds (6 H-bonds with 
P620, D623, T680, T687, T680, and  N691, which was 
reflected in the binding energy values (42.6 and 1.7 
kcal/mol for Ribavirin and Galidesivir, respectively). 
On the other hand, Sofosbuvir formed 5 H- bonds 
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(N459, T462, P677, L460, T462) and 09 hydrophobic 
contacts with the SARS-CoV-2 RdRp (Table 3). 

The five approved drugs (Galidesivir, Remdesivir, 
Tenofovir, Sofosbuvir, and Ribavirin) could effectively 
interact to SARS-CoV-2 RdRp, with binding energies 
comparable to those of native nucleotides. The 
optimization of the compounds using the high-quality 
model of SARS-CoV-2 RdRp may result in develop 
perfect compound that able to control the newly 
emerged virus infection. 

 
Conclusion 

RdRp-CoV (nsp12) is serving as a potential target 
for the anti-polymerase drugs to inhibit virus replication. 
The results suggest the effectiveness of Ribavirin, 
Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir as 
potent drugs against SARS-CoV-2 since they tightly 
bind to RdRp. The available FDA-approved anti-RdRp 
drugs that are currently in clinical trials or in the market 
could be used on the emergency basis for treatment of 
new viral infection COVID-19.  
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