XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kpomah E D, James O G, Kpomah B. Aphrodisiac activity of ethanolic root extracts of Acacia pycnantha (Golden Wattle) in healthy male Wistar rats. Journal of Research in Applied and Basic Medical Sciences 2025; 11 (1) :59-67
URL: http://ijrabms.umsu.ac.ir/article-1-362-en.html
PhD Biochemistry Department, Federal University Otuoke, Bayelsa State, Nigeria , kpomahed@fuotuoke.edu.ng
Abstract:   (113 Views)
Background & Aims: This study examines the aphrodisiac potentials of Acacia pycnantha in male Wistar rats, aiming at its effects on sexual behaviour, serum free testosterone and serum calcium concentrations.
Materials & Methods: A. pycnantha roots were extracted using ethanol. Twenty male rats, averagely weighing 250.44 ± 8.72 g, were divided into four groups of five rats per group. Group 1, which is the control received normal saline (vehicle), group 2, the positive control, received 5 mg/kg of Yohimbine; and groups 3 and 4 received 50 mg/kg and 100 mg/kg of A. pycnantha, respectively. All test drugs were orally administered using an intragastric tube, and the treatment protocol lasted for 14 days. Sexual behaviour was assessed by measuring mounting frequency, intromission frequency, erection duration, and latency period. Serum-free testosterone and calcium concentrations were also measured. Data were analyzed using one-way ANOVA with Tukey’s post-hoc test to compare means and Pearson’s correlation to determine relationships between hormone concentrations and sexual behaviour indices.
Results: Both low and high doses of A. pycnantha significantly amplified mounting frequency, intromission frequency, and erection duration while decreasing the latency period compared to the control group, with the high-dose group showing the most prominent effects. Serum-free testosterone concentrations were significantly elevated (p < 0.05) in both treated groups, with the high-dose group exhibiting the greatest increase. Additionally, serum calcium concentrations were significantly higher (p < 0.05) in the treated groups, with the high-dose group showing the most substantial increase. Pearson’s correlation analysis revealed strong positive correlations between testosterone concentrations and sexual behaviour parameters, and moderate to strong positive correlations between calcium concentrations and sexual behaviour parameters.
Conclusion: A. pycnantha demonstrated significant aphrodisiac activity by enhancing sexual behaviour, elevating serum-free testosterone concentrations, and increasing serum calcium concentrations in male Wistar rats.
 
Full-Text [PDF 344 kb]   (48 Downloads)    
Type of Study: orginal article | Subject: General

References
1. Van Anders SM. Testosterone and sexual desire in healthy women and men. Arch. Sex. Behav 2012;41: 1471-84. [DOI:10.1007/s10508-012-9946-2]
2. Vitale SG, Caruso S, Rapisarda, AMC, Cianci S, Cianci A. Isoflavones, calcium, vitamin D and inulin improve quality of life, sexual function, body composition and metabolic parameters in menopausal women: result from a prospective, randomized, placebo-controlled, parallel-group study. Prz. Menopauzalny 2018;17(1): 32-8. [DOI:10.5114/pm.2018.73791] [PMID] [PMCID]
3. Kpomah, E.D. Biochemical effects of Zanthoxylium leprieurii Guill & Perr on reproductive hormones, liver function and plasma enzyme activity of male wistar rats. IJBST 2019; 5(2):73-8 [URL]
4. Corona G, Maggi M. The role of testosterone in male sexual function. Rev. Endocr. Metab. Disord 2022;23(6):1159-1172. [DOI:10.1007/s11154-022-09748-3] [PMID] [PMCID]
5. Shamloul R, Ghanem H. Erectile dysfunction. Lancet 2013; 381(9861): 153-65. [DOI:10.1016/S0140-6736(12)60520-0] [PMID]
6. Kpomah B, Egboh SHO, Agbaire PO, Kpomah ED. Spectroscopic Characterization, Antimicrobial and Toxicological Properties of Derivatised Thiosemicarbazone Transition Metal Complexes. Saudi J. Med. Pharm. Sci 2016;2:(12):318-25. [DOI:10.18576/jpac/020203]
7. Kpomah B, Egboh SHO, Agbaire PO Kpomah ED. Metal complexes of acetone thiosemicarbazone: synthesis, spectral characterization and pharmacological studies. J. Pharm. Appl. Chem 2016; 2(2):45-51. [DOI:10.18576/jpac/020203]
8. Brock G. Oral Agents: First-Line Therapy for Erectile Dysfunction. Eur. Urol. Suppl 2002;1(8), 12-18. [DOI:10.1016/S1569-9056(02)00113-6]
9. Kpomah ED, Monday DA, Kpomah B. (2019). GCMS analysis of leaves and seeds of Piper guineense Schumach & Thoon. African Scientist 2019;20(3):127-38 [Google Scholar]
10. Kpomah ED, Ogbogbo J, Kpomah B. Sub-acute toxicity studies of Phyllanthus amarus on haematological parameters and some plasma enzyme activities in mice. IJBST 2017;3(1):53-58. [DOI:10.18576/jpac/030306]
11. Kpomah ED, Kpomah B, Arhoghro EM. Histomorphological and Biochemical Changes Induced in Male Wistar Rats by Chronic Oral Doses of Piper guineense Schumach. & Thonn. Niger. J. Pharm. Sci 2018:7(1):44-51 [Google Scholar]
12. Shamloul R. Natural aphrodisiacs. Sex. Med 2010; 7(1), 39-49. [DOI:10.1111/j.1743-6109.2009.01521.x] [PMID]
13. McLay TG, Murphy DJ, Holmes GD, Mathews S, Brown GK, Cantrill DJ, et al. A genome resource for Acacia, Australia's largest plant genus. PloS one 2022; 17(10): e0274267. [DOI:10.1371/journal.pone.0274267] [PMID] [PMCID]
14. Subhan N, Burrows GE, Kerr PG, Obied HK. Phytochemistry, ethnomedicine, and pharmacology of Acacia. Studies in Natural Products Chemistry 2018; 57: 247-326. [DOI:10.1016/B978-0-444-64057-4.00009-0]
15. Pedro SI, Fernandes TA, Luís Â, Antunes AM, Gonçalves JC, Gominho J, et al. First chemical profile analysis of Acacia pods. Plants 2023b;12(19). [DOI:10.3390/plants12193486] [PMID] [PMCID]
16. Edrah SM, Alafid F, Shmeala H, Abobaker DM. Phytochemical analysis and antibacterial activity of Acacia pycnantha from Alkhums Libya. InProceedings of the 2nd Annual Conference on Theories and Applications of Basic and Biosciences, University of Misurata, Misurata, Lybia 2018; pp. 704-12. [URL]
17. Kpomah ED, Osioma E, Agoro ES. (2024). Sexual Invigorating Potentials of a Combined Extract of Sabicea calycina and Carpolobia lutea on Male Wistar Rats in Crude Oil Challenged Environment. Int J Biochem Res Rev 2024: 33(1):39-54. [DOI:10.9734/ijbcrr/2024/v33i1851]
18. Kpomah ED, Uwakwe AA, Bw A. Aphrodisiac studies of diherbal mixture of Zanthoxylum leprieurii Guill. & Perr and Piper guinense Schumach. & Thonn on male wistar rat. GJRMI 2012;1(9):381-90. [Google Scholar]
19. Rowland DL, McNabney SM, Mulzon KR, Trammell S. Plant-derived supplements for sexual health and problems, part 2: Further evidence for specific herbal effects. Curr. Sex. Health Rep 2019;11(3):144-55. [DOI:10.1007/s11930-019-00204-z]
20. Chauhan NS, Sharma V, Dixit V.K, Thakur M. A review on plants used for improvement of sexual performance and virility. Biomed Res. Int 2014; (1):868062. [DOI:10.1155/2014/868062] [PMID] [PMCID]
21. Yadav A, Mishra RK. Withania somnifera ameliorates sexual arousal and impotence in stressed sexually sluggish male rats by modulating neurotransmitters and NO/cGMP/PDE5α pathway. J. Ethnopharmacol 2014; 318: 116971. [DOI:10.1016/j.jep.2023.116971] [PMID]
22. Sengupta P, Agarwal A, Pogrebetskaya M, Roychoudhury S, Durairajanayagam D, Henkel R. Role of Withania somnifera (Ashwagandha) in the management of male infertility. Reprod. Biomed. Online 2018; 36(3), 311-26. [DOI:10.1016/j.rbmo.2017.11.007]
23. Dau TD, Le MH, Nguyen TTGH, Dang TNM, Do TNQ, Tran QT. Effects of Cnidium monnieri (L.) Cuss. fruit extract on sexual behaviors in male rats. Clin. phytosci 2020; 6:1-6. [DOI:10.1186/s40816-020-00227-3]
24. Mansoori A, Hosseini S, Zilaee M, Hormoznejad R, Fathi M. Effect of fenugreek extract supplement on testosterone levels in male: A meta‐analysis of clinical trials. Phytother. Res 2020;34(7):1550-1555. [DOI:10.1002/ptr.6627] [PMID]
25. Koppula S, Kopalli SR, Kang HH, Kim SK. (2023). Benefits of Panax ginseng on Male Reproductive Systems: A Comprehensive Review. FSBH 2023 3(4). [DOI:10.52361/fsbh.2023.3.e32]
26. Kpomah ED, Kpomah B. Microstructural Tissue Assessment, Sex Hormones and Biochemical Investigations following Acute Administration of Piper guineense Schumach & Thonn. on female Rattus novergicus. IOSR-JAC 2018;11(5):9-17 [URL]
27. Bancroft J. The endocrinology of sexual arousal. J. Endocrinol 2005; 186(3):411-427. [DOI:10.1677/joe.1.06233]
28. Souza ILLD, Ferreira EDS, Vasconcelos LHC, Cavalcante FDA, Silva BAD. Erectile dysfunction: key role of cavernous smooth muscle cells. Front. pharmacol 2022; 13:895044. [DOI:10.3389/fphar.2022.895044] [PMID] [PMCID]
29. Sparwasser C, Schmelz HU, Drescher P, Eckert R, Madsen PO. (1998). Role of intracellular Ca2+ stores in smooth muscle of human penile erectile tissue. Urol. Res 1998; 26:189-193. [DOI:10.1007/s002400050045] [PMID]
30. Berridge MJ. (2008). Smooth muscle cell calcium activation mechanisms. J. Physiol 2008; 586(21): 5047-5061. [DOI:10.1113/jphysiol.2008.160440] [PMCID]
31. Huang SA, Lie JD. Phosphodiesterase-5 (PDE5) Inhibitors: In the Management of Erectile Dysfunction. P & T 2013; 38(7), 407-19. [PMID]
32. Klimas C, Ehlert U, Lacker TJ, Waldvogel P, Walther A. Higher testosterone levels are associated with unfaithful behaviour in men. Biol. Psycho 2019; 146:107730. [DOI:10.1016/j.biopsycho.2019.107730] [PMID]
33. Schardein JN, Hotaling JM. The impact of testosterone on erectile function. Androg Clin Res Ther 2022; 3(1):113-24. [DOI:10.1089/andro.2021.0033]
34. Rastrelli G, Corona G, Maggi M. Testosterone and sexual function in men. Maturitas 2018; 112:46-52. [DOI:10.1016/j.maturitas.2018.04.004] [PMID]
35. Matikainen N, Pekkarinen T, Ryhänen EM, Schalin-Jäntti C. Physiology of calcium homeostasis: an overview. Clin. Endocrinol. Metab 2021; 50(4):575-90. [DOI:10.1016/j.ecl.2021.07.005] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb