XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dave V, Gaur S, Mehta V, Ahuja M S. Anatomy of valves of the coronary venous system and great cardiac vein: implications for interventional cardiology. Journal of Research in Applied and Basic Medical Sciences 2025; 11 (2) :139-146
URL: http://ijrabms.umsu.ac.ir/article-1-376-en.html
Assistant professor, Department of Anatomy, Amrita Vishwa Vidyapeetham, Amrita School of Medicine, Faridabad , daveveenu@gmail.com
Abstract:   (295 Views)
Background & Aims: The coronary venous system is an emerging field of interest for cardiologists with advancement of the electrophysiological procedures. Transcatheter coronary sinus interventional therapy is a promising method to treat coronary heart diseases. Thebesian valve (TV), Vieussens valve (Vv), and bend of the great cardiac vein (GCV) are commonly encountered obstacles in the passage of catheter. In this study, we aimed to evaluate the factors causing complications and obstruction to coronary venous catheterization.
Materials & Methods: In this cross-sectional observational study, we examined 110 formalin-fixed cadaveric hearts. The height of TV, the transverse and craniocaudal diameter of coronary sinus ostium (CSO), length, diameter, and angle of bend of GCV were measured. The presence or absence of Vv was noted. The morphological characteristics of TV and the percentage of CSO coverage by TV were recorded.
Results: The TV and Vv were observed in 91 (82.7%) and 59 (53.63%) specimens respectively. Remnant (8.2%), semilunar (52.1%), fold (10%), cord (3.6%), and fenestrated (8.2%) morphologies of TV were reported. In 16 (20.5%) hearts, Thebesian valve was covering more than 75% of CSO. Hearts with larger diameter of CSO presented smaller height of TV. The mean length and diameter of GCV were measured as 135.1 ± 31.6 mm and 4.31 ± 1.44 mm respectively. The mean angle of bend of GCV was calculated as 104.1 degrees. The acute angle was observed in 3.6% of specimens.
Conclusion: Knowledge of the obstructive anatomical structures and their variations can be helpful in the optimization of a more suitable invasive technique for invasive cardiology. 
Full-Text [PDF 485 kb]   (60 Downloads)    
Type of Study: orginal article | Subject: Special

References
1. Gras D, Leclercq C, Tang AS, Bucknall C, Luttikhuis HO, Kirstein-Pedersen A. Cardiac resynchronization therapy in advanced heart failure the multicenter InSync clinical study. Eur J Heart Fail 2002;4(3):311-320. https://doi.org/10.1016/S1388-9842(02)00018-1 [DOI:10.1016/s1388-9842(02)00018-1] [PMID]
2. Molhoek SG, Bax JJ, Van Erven L, Bootsma M, Boersma E, Steendijk P, et al. Effectiveness of resynchronization therapy in patients with end-stage heart failure. Am J Cardiol 2002;90(4):379-383. https://doi.org/10.1016/S0002-9149(02)02493-1 [DOI:10.1016/s0002-9149(02)02493-1] [PMID]
3. Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C, et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 2001;344(12):873-880. [DOI:10.1056/NEJM200103223441202] [PMID]
4. Mlynarski R, Mlynarska A, Tendera M, Sosnowski M. Coronary sinus ostium: the key structure in the heart's anatomy from the electrophysiologist's point of view. Heart Vessels 2011;26(4):449-456. [DOI:10.1007/s00380-010-0075-3] [PMID]
5. Corcoran SJ, Lawrence C, McGuire MA. The valve of vieussens: an important cause of difficulty in advancing catheters into the cardiac veins. J Cardiovasc Electrophysiol 1999;10(6):804-808. [DOI:10.1111/j.1540-8167.1999.tb00260.x] [PMID]
6. Mak GS, Hill AJ, Moisiuc F, Krishnan SC. Variations in Thebesian valve anatomy and coronary sinus ostium: Implications for invasive electrophysiology procedures. Europace 2009;11(9):1188-1192. [DOI:10.1093/europace/eup179] [PMID]
7. Gras D, Mabo P, Tang T, Luttikuis O, Chatoor R, Pedersen AK, et al. Multisite pacing as a supplemental treatment of congestive heart failure: preliminary results of the Medtronic Inc. InSync Study. Pacing Clin Electrophysiol 1998;21(11 Pt 2):2249-55. [DOI:10.1111/j.1540-8159.1998.tb01162.x] [PMID]
8. Azizi M, Castel MA, Behrens S, Rödiger W, Nägele H. Experience with coronary sinus lead implantations for cardiac resynchronization therapy in 244 patients. Herzschrittmacherther Elektrophysiol 2006;17(1):13-18. [DOI:10.1007/s00399-006-0502-4] [PMID]
9. Noble S, Vilarino R, Muller H, Sunthorn H, Roffi M. Fatal coronary sinus and aortic erosions following percutaneous transvenous mitral annuloplasty device. EuroIntervention 2011;7(1):148-150. [DOI:10.4244/EIJV7I1A24] [PMID]
10. Standring S. Gray's Anatomy: The anatomical basis of clinical practice. 40th edn. Churchill Living Stone Elsevier, London 2008. P. 1797-1799. [Google Scholar]
11. Hołda MK, Klimek-Piotrowska W, Koziej M, Mazur M. Anatomical variations of the coronary sinus valve (Thebesian valve): implications for electrocardiological procedures. Europace 2015;17(6):921-927. [DOI:10.1093/europace/euu397] [PMID]
12. Williams B, Menon M, Satran D, Hayward D, Hodges JS, Burke MN, et al. Patients with coronary artery disease not amenable to traditional revascularization: prevalence and 3-year mortality. Catheter Cardiovasc Interv 2010;75(6):886-891. [DOI:10.1002/ccd.22431] [PMID]
13. Pratt FH. The nutrition of the heart through the vessels of Thebesius and the coronary veins. Am J Physiol 1898;1(1): 86-103. [DOI:10.1152/ajplegacy.1898.1.1.86]
14. Karaca M, Bilge O, Dinckal MH, Ucerler H. The anatomic barriers in the coronary sinus: implications for clinical procedures. J Interv Card Electrophysiol 2005;14(2):89-94. [DOI:10.1007/s10840-005-4596-0] [PMID]
15. Christiaens L, Ardilouze P, Ragot S, Mergy J, Allal J. Prospective evaluation of the anatomy of the coronary venous system using multidetector row computed tomography. Int J Cardiol 2008;126(2):204-208. [DOI:10.1016/j.ijcard.2007.03.128] [PMID]
16. Ghosh SK, Raheja S, Tuli A. Obstructive Thebesian valve: anatomical study and implications for invasive cardiologic procedures. Anat Sci Int 2013;89(2):85-94. [DOI:10.1007/s12565-013-0203-0] [PMID]
17. Hellerstein HK, Orbison JL. Anatomic variations of the orifice of the human coronary sinus. Circulation 1951;3(4):514-523. https://doi.org/10.1161/01.CIR.3.4.514 [DOI:10.1161/01.cir.3.4.514] [PMID]
18. Randhawa A, Saini A, Aggarwal A, Rohit MK, Sahni D. Variance in coronary venous anatomy: a critical determinant in optimal candidate selection for cardiac resynchronization therapy. Pacing Clin Electrophysiol 2013;36(1):94-102. [DOI:10.1111/pace.12026] [PMID]
19. Pejković B, Krajnc I, Anderhuber F, Kosutić D. Anatomical variations of the coronary sinus ostium area of the human heart. J Int Med Res 2008;36(2):314-321. [DOI:10.1177/147323000803600214] [PMID]
20. Anh DJ, Eversull CS, Chen HA, Mofrad P, Mourlas NJ, Mead RH, et al. Characterization of human coronary sinus valves by direct visualization during biventricular pacemaker implantation. Pacing Clin Electrophysiol 2008;31(1):78-82. [DOI:10.1111/j.1540-8159.2007.00928.x] [PMID]
21. Tyrak KW, Holda J, Holda MK, Koziej M, Piatek K, Klimek-Piotrowska W. Persistent left superior vana cava. Cardiovasc J. Afr 2017; 23;28(3):e1-e4. [DOI:10.5830/CVJA-2016-084] [PMID] [PMCID]
22. El-Maasarany S, Ferrett CG, Firth A, Sheppard M, Henein MY. The coronary sinus conduit function: anatomical study (relationship to adjacent structures). Europace 2005;7(5):475-481. [DOI:10.1016/j.eupc.2005.05.013] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb