Ethics code: NHREC/12/06/2013/135/23


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Festus O, Dic-Ijiewere E, Ailemen F, Imafidon N, Ebo J, Nwankwo C et al . Oxidative stress pattern of patients with abnormal thyroid function in Southern Nigeria. Journal of Research in Applied and Basic Medical Sciences 2025; 11 (1) :85-97
URL: http://ijrabms.umsu.ac.ir/article-1-385-en.html
Department of Chemical Pathology, Ambrose Alli University, Ekpoma, Nigeria , ebenexar@gmail.com
Abstract:   (233 Views)
Background & Aims: In humans, oxidative changes have been associated with abnormal thyroid hormone levels. The aim of the study was to evaluate antioxidants and oxidative stress parameters in subjects with abnormal thyroid hormones in Irrua, Edo State.
Materials & Methods: Two hundred samples were used for this study including 120 test subjects visiting the clinic with abnormal thyroid-related complaints and 80 healthy control groups. The triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH), malondialdehyde (MDA), reduced glutathione (rGSH), and catalase levels were determined using standard laboratory procedures. The results were presented in tables and charts as mean ± standard deviation.
Results: Analysis of oxidative stress markers revealed that MDA levels in test subjects (4.9 ± 0.6) were not significantly different from the control group (4.7 ± 0.5; P = 0.77). Similarly, catalase activity in test subjects (216.9 ± 25.8) showed no significant difference compared to controls (178.6 ± 19.4; P = 0.29). However, rGSH levels were significantly lower in test subjects (74.8 ± 9.7) compared to controls (134.6 ± 9.7; p < 0.001). When analyzing thyroid function parameters, females with normal thyroid function exhibited significantly higher serum catalase levels (283.1 ± 38.9) compared to those with subclinical hyperthyroidism (101.5 ± 8.4) or hyperthyroidism (131.9 ± 13.0; P < 0.05). Among male participants, those with hyperthyroidism showed significantly lower rGSH levels (77.3 ± 23.5) compared to both males with subclinical hypothyroidism (186.0 ± 00.0) and healthy male controls (136.8 ± 7.7; P < 0.05). A key finding from this study is that thyroid dysfunction may not cause oxidative stress through lipid peroxidation. However, by the suppression of rGSH, this can have severe implications on the overall antioxidant defense system of the body predisposing it to oxidative damage and diseases.
Conclusion: The findings of this study show that hyperthyroidism induces oxidative stress regardless of gender, which could play a major role in disease formation and other associated abnormal conditions.
Full-Text [PDF 548 kb]   (100 Downloads)    
Type of Study: orginal article | Subject: Other

References
1. Sahoo DK, Samanta, Kavindra KK, Mukherjee S. Hormonal imbalance associated oxidative stress and protective benefits of nutritional antioxidants. Front. Endocrinol 2024;15:1368580. [DOI:10.3389/fendo.2024.1368580] [PMID] [PMCID]
2. Sahoo DK, Chainy GBN. Hormone-linked redox status and its modulation by antioxidants. Vitam Horm 2023;121:197-246. [DOI:10.1104/pp.106.077073] [PMID] [PMCID]
3. Spills J, Caspers LD, Puylaert P, Nachtsheim BJ. Oxidative cyclization and enzyme-free deiodination of thyroid hormones. Org Chem Front 2024;11,2800-2806. [DOI:10.1039/D4QO00220B]
4. Kim B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 2018;18(8):141-144. [DOI:10.1089/thy.2007.0266] [PMID]
5. Ferna'ndez V, Videla LA. Influence of hyperthyroidism on superoxide radical and hydrogen peroxide production by rat liver sub-mitochondrial particles. Free Radic Res Commun 1993;18:329-335. [DOI:10.3109/10715769309147500] [PMID]
6. James R, Kumar V. Study on the prevalence of thyroid diseases in Ernakulam city and Cherthala town of Kerala state, India. Int J Sci Res Pub 2012;2(1):1-3. [Google Scholar]
7. Basant J, Sangeeta S, Aman S, Seema G, Vanishree BJ. A study of lipid peroxidation and total antioxidant capacity in hyperthyroid & hypothyroid female subjects. Galore Int J Healt Sci Res 2018;3(4): 1-8. [DOI:10.52403/gijhsr]
8. Macvanin MT, Gluvic Z, Zafirovic S, Gao X, Essack M, Isenovic ER. The protective role of nutritional antioxidants against oxidative stress in thyroid disorders. Front Endocrinol 2023;13:1092837. [DOI:10.3389/fendo.2022.1092837] [PMID] [PMCID]
9. Arcos MLB. Role of thyroid hormones-induced oxidative stress on cardiovascular physiology. Biochimica et Biophysica Acta 2022;1866(12): 130239. [DOI:10.1016/j.bbagen.2022.130239] [PMID]
10. Bankson DD, Kestin M, Rifai N. Role of free radicals in cancer and atherosclerosis. Clin Lab Med 1993;13(3):463-480. [DOI:10.1016/S0272-2712(18)30449-9] [PMID]
11. Shinkai K, Mukai M, Akedo H. Superoxide radical potentiates invasive capacity of rat ascites hepatoma cell in vitro. Cancer Lett 1986;1(1):7-13. [DOI:10.1016/S0272-2712(18)30449-9] [PMID]
12. Dursun B, Dursun E, Capraz I, Ozben T, Apaydin A, Suleymanlar G. Are uremia, diabetes, and artherosclerosis linked with impaired antioxidant mechanisms? J Investig Med 2018;5(6):545-552. [DOI:10.2310/JIM.0b013e3181641ce3] [PMID]
13. Lu SC, Kwon IP, Pei CO, Chen CZ. Glutathione synthesis. Biochim Biophys acta 2013;30(5):3143-3153. [DOI:10.1016/j.bbagen.2012.09.008] [PMID] [PMCID]
14. Guoyao W, Yun-Zhong F, Sheng Y, Joanne R, Lupton DT. Glutathione Metabolism and its Implications for Health. J Nutri 2004;134(3):489-492. [DOI:10.1093/jn/134.3.489] [PMID]
15. Kosower NS, Kosower EM. The Glutathione Status of Cells. International Review in Cytology 1978;54(6):109-115. [DOI:10.1016/S0074-7696(08)60166-7] [PMID]
16. Panday S, Talreja R, Kavdia M. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvasc Res 2020;131:104010. [DOI:10.1016/j.mvr.2020.104010] [PMID]
17. Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012; 2012:736837. [DOI:10.1155/2012/736837] [PMID] [PMCID]
18. Hashmi MA, Ahsan B, Shah SI, Khan MI. Antioxidant capacity and lipid peroxidation product in pulmonary tuberculosis. American Journal of Medical Science 2012;5(3):313-319. [Google Scholar]
19. Zwart LL. Biomarkers of Free radical Damage Applications in Experimental Animals and Humans. Free Radic Biol Med 1999;2(6):202-226. [DOI:10.1016/S0891-5849(98)00196-8] [PMID]
20. Zhang Y, Chen SY, Hsu T, Santella RM. Immunohistochemical detection of malondialdehyde-DNA adducts in human oral mucosa cells. Carcinogenesis 2002;2(3):207-211. [DOI:10.1093/carcin/23.1.207] [PMID]
21. Karademir CB, Ozden S, Alpertunga B. Effects of trichlorfon on malondialdehyde and antioxidant system in human erythrocytes. Toxicol In Vitro 2007;21(7):1538-1544. [DOI:10.1016/j.tiv.2007.06.002] [PMID]
22. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci 2004;61(2):192-208. [DOI:10.1007/s00018-003-3206-5] [PMID] [PMCID]
23. Boon EM, Downs A, Marcey D. Catalase: H2O2: H2O2 Oxidoreductase. Methods of Biochemical Analysis 2016;1(1):357-424. [URL]
24. Fernandez X, Barrientos K, Kiperos A, Valenzuela LA. Superoxide radical generation, NADPH oxidase activity and cytochrome p-450 content of rat liver microsomal fractions in an experimental hyperthyroid state: relation to lipid peroxidation. J Endocrinol 1995;11(7):496-501. [DOI:10.1210/endo-117-2-496] [PMID]
25. Erdamar H, Cimen B, Gulcemal H, Saraymen R, Yerer B, Demirci H. Increased lipid peroxidation and impaired enzymatic antioxidant defense mechanism in thyroid tissue multinodular goiter and papillary carcinoma. Clin Biochem 2010;43(7-8):650-654. [DOI:10.1016/j.clinbiochem.2010.02.005] [PMID]
26. Mihara M, Uchiyama M. Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Analytical biochem 1978;86(1):271-278. [DOI:10.1016/0003-2697(78)90342-1] [PMID]
27. Weydert CJ, Cullen JJ. Measurement of superioxide dismustase, catalase, and glutathione peroxidase in cultured cells and tissue. Nat Protoc 2011;5(1):51-66. [DOI:10.1038/nprot.2009.197] [PMID] [PMCID]
28. Sadani GR, Nadkarni GD. Role of tissue antioxidant defense in thyroid cancers. Cancer Lett 1996;109(9):231-235. [DOI:10.1016/S0304-3835(96)04484-9] [PMID]
29. Yangawa T, Ishikawa T, Ishii T, Tabuchi K, Iwasa S, Bannai S, Omura K, Suzuki H, Yoshida H. Peroxidoxin I expression in human thyroid tumours. Cancer Lett 1999;145(9):127-132. [DOI:10.1016/S0304-3835(99)00243-8] [PMID]
30. Akinci M, Kosova F, Cetin B, Sepici A, Altan N, Aslan S, Cetin A. Oxidant/antioxidant balance in patients with thyroid cancer. Acta Circ Bras 2008;23(6):551-554. [DOI:10.1590/S0102-86502008000600013] [PMID]
31. Sultana R, Shahin A, Jawadul H. Measurement of oxidative stress and total antioxidant capacity in hyperthyroid patients following treatment with carbimazole and antioxidant. Heliyon 2022;8(1): e08651. [DOI:10.1016/j.heliyon.2021.e08651] [PMID] [PMCID]
32. Varghese C, Vijayalakshmi B, Mukkadan JK, Paul V, Thresiamma KC. Case control study of antioxidant markers in autoimmune thyroid disorders. Afr. J. Biomed Res 2024;27(3):999-1004. [DOI:10.53555/AJBR.v27i3.1809]
33. Kochman J, Jakubczyk K, Bargiel P, Janda-Milczarek K. The influence of Oxidative Stress on Diseases. Antioxidants (Basel, Switzerland) 2021;10(9):1442. [DOI:10.3390/antiox10091442] [PMID] [PMCID]
34. Marcocci C, Leo M, Altea MA. Oxidative stress in grave's disease. Eur Thyroid J 2021;1(2):80-87. [DOI:10.1159/000337976] [PMID] [PMCID]
35. Joshi B, Singh S, Saini A. A study of lipid peroxidation and total antioxidant capacity in hyperthyroid & hypothyroid female subjects. Galore Inter J Health Sci Res 2018;3(4):1-8. [Google Scholar]
36. Omon EA, Ajayi OD. Oxidative stress and antioxidants markers in individuals with thyroid hormones dysfunction. Eur J Clin Exp Med 2023;21(4):768-775. [DOI:10.15584/ejcem.2023.4.18]
37. Asayama K, Dobashi K, Hayashibe H, Megata Y, Kato K. Lipid peroxidation and free radical scavengers in thyroid dysfunction in rat: a possible mechanism of injury to heart and skeletal muscle in hyperthyroidism. Endocrinol 1997;121(6):2112-2118. [DOI:10.1210/endo-121-6-2112] [PMID]
38. Bozhko AP, Gorodetskaia IV, Solodkov AP. Restrictions of stress-induced activation of lipid peroxidation by small doses of thyroid hormones. Bull Eksp Biol Med 2011;10(9):539-541. [Google Scholar]
39. Faure M, Lissi EA, Videla LA. Evaluation of the antioxidant properties of thyroid hormones and propylthiouracil in the brain-homogenate autoxidation system and in the free radical-mediated oxidation of erythrocyte memebranes. Chem Biol Interact 1991;77(4):173-185. [DOI:10.1016/0009-2797(91)90072-F] [PMID]
40. Kumari SN, Ayub H, Parveen M, Sinha RR. A Study of Oxidative Stress and Status of Serum Zinc & Copper in Subjects with Hypothyroidism. Int J Acad Med Pharm 2023;5(6);239-242.
41. Iangolenko VV, Okorokov AN. Blood levels of medium molecular weight peptides and lipid peroxidation activity in the differential diagnosis of diffuse toxic goitre. Probl Endokrinol 1991;37(3):10-12. [Google Scholar]
42. Costantini F, Pierdomenico SD, De-Cesare D, De-Remigis P. Effect of thyroid function on LDL oxidation. Arteriosclerosis & Thrombotic Vascular Biology 1998;18(6):732-737. [DOI:10.1161/01.ATV.18.5.732] [PMID]
43. Adali M, Inal-Erden M, Akalin A, Efe B. Effects of propylthiouracil, propranolol, and vitamin E on lipid peroxidation and antioxidant status in hyperthyroid patients. Clinical Biochemistry 1999;32(5),363-367. [DOI:10.1016/S0009-9120(99)00024-7] [PMID]
44. El-Laithy AN, Abe R, Youness E, Ibrahim A, El-Nemr M, El-Shamy KA. Antioxidant defense system as a protector against oxidative stress induced by thyroid dysfunction. Der Pharmacia Lettre 2016,8 (6):113-118. [URL]
45. Seyed-Mostafa H, Seyed-Alireza E, Mohammad TG, Mehdi H, Roghayeh A, Mohammad PM, Jalal P, Fabio Z, Nasrin S. Lipid Peroxidation and Antioxidant status in Patients with medullary thyroid carcinoma: A case-control study. J Clin Diagn Res 2016;10(2):4-7. [DOI:10.7860/JCDR/2016/17854.7202] [PMID] [PMCID]
46. Dumitrescu C, Belgun M, Olinescu R, Lianu L, Bartoc C. Effect of vitamin C administration on the ratio between the pro- and antioxidative factors. Rom J Endocrinol 1993;31(1-2):81-84. [Google Scholar]
47. Olio JBH, Khadem HMA, Yousef R, Mahsa HM. Evaluation of malondialdehyde levels and total antioxidant capacity in patients with hyperthyroidism. Int. J. Res. Appl. Basic Med Sci 2019;5(2)121-127. [Google Scholar]
48. Banerjee KK, Marimuthu P, Sarkar A, Chaudhuri RN. Influence of cigarette smoking on Vitamin C, glutathione and lipid peroxidation status. Indian J Public Health 1998;42(1):20-23. Gerard-Monnier [Google Scholar]
49. Gerard-Monnier D, Chaudiere J. Metabolism and antioxidant function of glutathione. PatholBiol Paris 1996;44(1):77-85. [Google Scholar]
50. Senat A, Erinc O, Yesilyurt S, Gok G, Erel O. Assessment of thiol-disulfide and glutathione homeostasis after levothyroxine replacement in individuals with autoimmune or nonautoimmune hypothyroidism. Arch. Endocrinol. Metab 2024;68. https://doi.org/10.20945/2359-4292-2023-0197 [DOI:10.20945/2359-4292-2023-0197.] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb