XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Usunobun U, Agunu O, Okechukwu B. Jatropha Tanjorensis attenuates doxorubicin-induced liver and spleen damages in rats. Journal of Research in Applied and Basic Medical Sciences 2024; 10 (3) :256-265
URL: http://ijrabms.umsu.ac.ir/article-1-339-en.html
Department of Biochemistry, Faculty of Basic Medical Sciences, Edo State University Uzairue, Edo State, Nigeria , usunobun.usunomena@edouniversity.edu.ng
Abstract:   (318 Views)
Background & Aims:  Doxorubicin is a widely used antineoplastic agent for the treatment of solid tumors but its use is limited by its several severe tissue and organ toxicities. This study investigated changes in liver and spleen as a result of toxicity produced by Doxorubicin and the protective role of aqueous leaf extract of J. Tanjorensis.
Materials & Methods: In this experimental study, rats were divided into 5 groups as follows: Group 1 served as control and orally received normal saline once daily. Doxorubicin (15 mg/kg) was administered to Group 2  from day 10. Group 3 received J. Tanjorensis (300 mg/kg, orally) once daily for 12 days. Group 4 received J. Tanjorensis (300 mg/kg, orally) once daily for 12 days and Doxorubicin (15 mg/kg) from day 10. Group 5 received Vitamin C (100 mg/kg, orally) once daily for 12 days, and Doxorubicin (15 mg/kg) from day 10. Doxorubicin administration was done intraperitoneally for three consecutive days. Sera samples were collected and used to assess liver function enzymes and synthetic molecules. Liver and spleen tissues were used to examine histopathological analysis. Data were analyzed by SPSS v.20 at a significance level of P<0.05.  
Results:  Administration of Doxorubicin caused significant increase in Alanine Transaminase (ALT), Aspartate Transaminase (AST), Acid Phosphatase (ACP), and total bilirubin (P values below 0.05), and a significant decrease in total protein and albumin compared to the control and J. Tanjorensis administered rats (P values below 0.05). The histopathological evaluation of liver tissue in the Doxorubicin injected rats revealed congestion, hemorrhagic necrosis, sinusoidal dilation, and mononuclear cell infiltration. Similarly, histology of spleen tissue in Doxorubicin administered rats showed degeneration and congestion, disintegrated peri-arteriolar lymphoid sheath, granuloma formation, and necrosis of lymphoid follicles. However, liver and spleen of rats given Doxorubicin and J. Tanjorensis showed reversal of liver function enzymes and synthetic ability towards normalcy, reduced signs of damage as well as recovering peri-arteriolar lymphoid sheath.
Conclusion:  Our study found that J. Tanjorensis is effective in preventing liver and spleen damage caused by Doxorubicin.
Full-Text [PDF 946 kb]   (110 Downloads)    
Type of Study: orginal article | Subject: Other

References
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global Cancer Statistics 2012. CA: Cancer J Clinicians 2015;65:87-108. [DOI:10.3322/caac.21262] [PMID]
2. van Dalen EC, van der Pal HJH, Kok WEM, Caron HN, Kremer LCM. Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur J Cancer 2006;42(18):3191-8. [DOI:10.1016/j.ejca.2006.08.005] [PMID]
3. Rawat PS, Jaiswal A, Khurana A, Bhatti, JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 2021;139:111708. [DOI:10.1016/j.biopha.2021.111708] [PMID]
4. Rochette L, Guenancia C, Gudjoncik A, Hachet O, Zeller M, Cottin Y, Vergely C. (2015). Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol Sci 2015;36:326-48. https://doi.org/10.1016/j.tips.2015.03.005 [DOI:10.1016/j.tips.2015.03.005.] [PMID]
5. Hashish FER, Abdel‑Wahedb MM, El‑Odemia MH, El‑Naidanyc SS, ElBatsh MM. (2021). Possible protective effects of quercetin on doxorubicin-induced cardiotoxicity in rats. Menoufia Med J 2021;34:333-9. [DOI:10.4103/mmj.mmj_5_20]
6. Subashini R, Ragavendran B, Gnanapragasam AK, Yogeeta S, Devaki T. Biochemical study on the protective potential of Nardostachys jatamansi extract on lipid profile and lipid metabolizing enzymes in doxorubicin intoxicated rats. Pharmazie 2007;62(5):382-7. [DOI:10.1691/ph.2007.5.6678]
7. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 2015;16:26087-124. https://doi.org/10.3390/ijms161125942 [DOI:10.3390/ijms161125942.] [PMID] []
8. Jung HA, Kim JI, Choung SY, Choi J. Protective effect of the edible brown alga Ecklonia stolonifera on doxorubicin-induced hepatotoxicity in primary rat hepatocytes. J Pharm Pharmacol 2014;66(8):1180-8. [DOI:10.1111/jphp.12241] [PMID]
9. Nurgali K, Jagoe RT, Abalo R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front Pharmacol 2018;9:245. [DOI:10.3389/fphar.2018.00245] [PMID] []
10. Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol 2019;54(2):407-19. [DOI:10.3892/ijo.2018.4661] [PMID] []
11. Prabakaran AJ, Sujatha M. Jatropha Tanjorensis Ellis and saroja, a natural interspecific hybrid occurring in Tamil Nadu, India. Genet Resour Crop Evol 1999;46:213-8. http://dx.doi.org/10.1023/A:1008635821757 [DOI:10.1023/A:1008635821757]
12. Olayiwola G, Iwalewa EO, Omobuwajo OR, Adeniyi AA, Verspohi EJ. The antidiabetic potential of Jatropha Tanjorensis leaves. Niger J Nat Prod Med 2004;8(1):55-8. [DOI:10.4314/njnpm.v8i1.11817]
13. Iwalewa EO, Adewumi CO, Omisore NO, Adebanji OA, Azike CK. Pro-antioxidant effects and cytoprotective potentials of nine edible vegetables in SouthWest, Niger J Med Food 2005;8:539-44. [DOI:10.1089/jmf.2005.8.539] [PMID]
14. Oduola T, Avwioro OG, Ayanniyi TB. Suitability of the leaf extract of Jatropha gossipifoliaas an anticoagulant for biochemical and haematological analysis. Afr J Biotech 2005;4:679-81. [DOI:10.5897/AJB2005.000-3125]
15. Oboh FOJ, Masodje HI. Nutritional and antimicrobial properties of Jatropha Tanjorensis leaves. Am-Euras J Sci Res 2009;4(1):7-10. [DOI:10.3923/jbs.2009.377.380]
16. Usunobun U, Osa-Osadolor SE. Elemental Concentration, Phytochemical Analysis and in vitro Antioxidant activity of Jatropha Tanjorensis Leaves. Proceedings of the 3rd International Conference and Exhibition of Organization for Women in Science for the Developing World (OWSD- BIU), held at Benson Idahosa University from 31st July - 4th August, 2017; Pp 846 - 856.
17. Atansuyi K, Ibukun EO, Ogunmoyole T. Antioxidant properties of free and bound phenolic extract of the leaves of Jatropha Tanjorensis in vitro. J Med Plants Res 2012;6(31):4667-4. https://doi.org/10.5897/JMPR12.294 [DOI:10.5897/JMPR12.294.]
18. Oyewole OI, Akingbala PF. Phytochemical Analysis and Hypolipidemic Properties of Jatropha Tanjorensis Leaf Extract. European. J Med Plants 2011;1(4):180-5. https://doi.org/10.9734/EJMP/2011/497 [DOI:10.9734/EJMP/2011/497.]
19. El-Moselhy MA, El-Sheikh AA. Protective mechanisms of atorvastatin against doxorubicin-induced hepato-renal toxicity. Biomed Pharmacother 2014;68(1):101-10. [DOI:10.1016/j.biopha.2013.09.001] [PMID]
20. Ebenyi LN, Yongabi KA, Ali FU, Ominyi MC, Anyanwu CB, Benjamin E, Ogbanshi ME. Effect of Aqueous Leaf Extract of Jatropha Tanjorensis on parasitaemia and haematological parameters in mice infected with Plasmodium berghei. Niger J Biotech 2021;38(1):146-53. https://dx.doi.org/10.4314/njb.v38i1.17 [DOI:10.4314/njb.v38i1.17]
21. Garber JC, Barbee RW, Bielitzki JT, Clayton LA, Donovan JC. The guide for the care and use of laboratory animals, 8th ed. (Washington, DC: Institute for Laboratory Animal Research The National Academic Press), 2011. [GOOGLE BOOKS]
22. Reitman S, Frankel S. A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am J Clin Pathol 1957;28:56-63. http://dx.doi.org/10.1093/ajcp/28.1.56 [DOI:10.1093/ajcp/28.1.56] [PMID]
23. Doumas BT, Watson WA, Biggs HG. Albumin standards and the measurement of serum albumin with bromocresol green. Clinica Chimica Acta 1971;31:87-96. http://dx.doi.org/10.1016/0009-8981(71)90365-2 [DOI:10.1016/0009-8981(71)90365-2] [PMID]
24. Tietz NW. Clinical Guide to Laboratory Tests (ELISA). 3rd Edition, W.B. Saunders, Co., Philadelphia, 1995; Pp: 22-23. [URL]
25. Jendrassik L. Grof P. Simplified Photometric Methods for the Determination of Bilirubin. Biochem J;1938;297:81-9 [URL]
26. Omobowale TO, Oyagbemi AA, Ajufo UE, Adejumobi OA, Yakubu MA. Ameliorative Effect of Gallic Acid in Doxorubicin-Induced Hepatotoxicity in Wistar Rats Through Antioxidant Defense System. J Diet Suppl 2017;15(2):1-14. [DOI:10.1080/19390211.2017.1335822] [PMID]
27. Tulubas F, Gurel A, Oran M, Topcu B, Caglar V, Uygur E. The protective effects of ω-3 fatty acids on doxorubicin-induced hepatotoxicity and nephrotoxicity in rats. Toxicol Indust Health 2015;31:638-44. [DOI:10.1177/0748233713483203] [PMID]
28. Melo JU, Santos JM, Kimura OS, Campos MM, Melo RB, Vasconcelos, P. R. Effects of Fatty acids on liver regeneration in rats. Rev Co. Bras Cir 2010;37(5):351-7. [DOI:10.1590/S0100-69912010000500008] [PMID]
29. Sprenger GA. Aromatic Amino Acids Biosynthesis, Pathways, Regulation and Metabolic Engineering; Springer pp93−127. 2006. [DOI:10.1007/7171_2006_067]
30. Mohan M, Kamble S, Satyanarayana J, Nageshwar M. Reddy N. Protective effect of Solanum torvum on Doxorubicin-induced hepatotoxicity in rats. Int J Drug Dev Res 2011;3:131-8. [GOOGLE SCHOLAR]
31. Usunobun U, Imoru NO, Ikponmwosa B, Egbo OH. Evaluation of Hepatoprotective Potential of Chromolaena odorata (L.) R.M. King & H.Rob. Against Methotrexate-induced Hepatic Toxicity in Rats. Plant Biotech Persa 2022;4(2):1-10. [DOI:10.52547/pbp.4.2.10]
32. Ikponmwosa BO, Usunobun U. Aqueous leaf extract of Chromolaena odorata attenuates methotrexate-induced hepatotoxicity in wistar rats. J Fund Appl Pharm Sci 2022;3(1):16-29. https://doi.org/10.18196/jfaps.v3i1.15652 [DOI:10.18196/jfaps.v3i1.15652.]
33. Oladele JO, Oladele OT, Ademiluyi AO, Oyeleke OM, Awosanya OO, Oyewole OI. Chaya (Jataropha Tanjorensis) leafs protect against sodium benzoate mediated renal dysfunction and hepatic damage in rats. Clin Phytosci 2020;6(13):2-8. https://doi.org/10.1186/s40816-020-00160-5 [DOI:10.1186/s40816020-00160-5]
34. Sharma MK, Kumar M, Kumar A. Protection against mercury-induced renal damage in Swiss albino mice by Ocimum sanctum. Env Toxicol Pharmacol 2005;19:161-8. [DOI:10.1016/j.etap.2004.06.002] [PMID]
35. Muniyan S, Chaturvedi NK, Dwyer JG, LaGrange CA, Chaney WG, Lin MF. Human prostatic acid phosphatase: structure, function and regulation. Int J Mol Sci 2013;14(5):10438-64. [DOI:10.3390/ijms140510438] [PMID] []
36. Usunobun, U, Okolie PN. Dimethylnitrosamine (DMN)-induced fibrotic rats: Effect of Vernonia amygdalina on extracellular matrix and hepatic/lysosomal integrity. Int J Pharm Toxicol 2016;4(1):7-11. [DOI:10.14419/ijpt.v4i1.5785]
37. Usunobun U, Okolie P.N. Annona muricata prevent hepatic fibrosis by enhancing lysosomal membrane stability and suppressing extracellular matrix protein accumulation. Int J Med 2016;4(1):10-3. [DOI:10.14419/ijm.v4i1.5784]
38. Levitt DG, Levitt MD. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med 2016;9:229-55. https://doi.org/10.2147/IJGM.S102819 [DOI:10.2147/IJGM.S102819.] [PMID] []
39. H, Jabri M-A, Souli A, Hosni K, Rtibi K, Tebourbi O, et al. Chemical composition, antioxidant properties and hepatoprotective effects of chamomile (Matricaria recutita L.) decoction extract against alcohol-induced oxidative stress in rat. Gen Physiol Biophys 2015;34(3):263-75. [DOI:10.4149/gpb_2014039] [PMID]
40. B, Bennet D, Belcher DJ, Kim H-G, Nader GA. Chemotherapy agents reduce protein synthesis and ribosomal capacity in myotubes independent of oxidative stress. Am J Physiol Cell Physiol 2021;321(6):C1000-9. [DOI:10.1152/ajpcell.00116.2021] [PMID] []
41. Prša P, Karademir B, Biçim G, Mahmoud H, Dahan I, Yalçın AS, et al. The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochem Pharmacol 2020;173(113551):113551. [DOI:10.1016/j.bcp.2019.06.007] [PMID]
42. C, Cui C, Wang C, Lu S, Zhang M, Chen D, et al. Systematic evaluations of doxorubicin-induced toxicity in rats based on metabolomics. ACS Omega 2021;6(1):358-66. [DOI:10.1021/acsomega.0c04677] [PMID] []
43. Mansouri E, Jangaran A, Ashtari A. Protective effect of pravastatin on doxorubicin-induced hepatotoxicity. Bratisl Lek Listy 2017;118(5):273-7. https://doi.org/10.4149/BLL_2017_054 [DOI:10.4149/BLL_2017_054.] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb