Volume 6, Issue 3 (July 2020)                   RABMS 2020, 6(3): 144-152 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farjah G H, Hadavi P, Zirak Javanmard M, Pourhydar B, Heshmatiyan B, Nozhat Z. The Effect of Human Amniotic Fluid in Decellularized Human Umbilical Vein Guide Channel on Sciatic Nerve Regeneration in Rats. RABMS. 2020; 6 (3) :144-152
URL: http://ijrabms.umsu.ac.ir/article-1-113-en.html
Neurophysiology Research Center, Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran , hfarjah@hotmail.com
Abstract:   (970 Views)
Background & Aims: The nerve autograft is the clinical gold standard in bridging nerve injury gaps, but it has severe disadvantages. The human umbilical vein (HUV) is suitable for multiple vascular reconstructive usages. The purpose of the present survey was to assess nerve regeneration by human amniotic fluid (AF) in the HUV channel.
Materials& Methods: In this study, 32 adult male rats (250-300g) were randomly divided into four groups: HUV+AF, HUV+normal saline (NS), Autograft, sham surgery. A centimeter gap in the sciatic nerve was grafted by autograft or HUV. Nerve regeneration was examined on days 28 and 90 after surgery by sciatic function index (SFI), electrophysiological assessments, histology, and immunohistology staining.
 Results: On days 60 and 90 after surgery, the SFI in the groups of autograft and HUV+AF was more than HUV+NS group (p <0.05). On the 90th day, the average nerve conduction velocity (NCV) and the number of myelinated axons in autograft and HUV+AF groups were significantly more than HUV+NS group (p <0.05).
Conclusion: The results of this study display that the HUV+AF may have beneficial effect for the treatment of peripheral nerve damages.
Full-Text [PDF 505 kb]   (564 Downloads)    
Type of Study: orginal article | Subject: Special

References
1. Mohammadi J, Delaviz H, Mohammadi B, Delaviz H, Rad P. Comparison of repair of peripheral nerve transaction in predegenerated muscle with and without a vein graft. BMC Neurol 2016; 16(1): 237-44. [DOI:10.1186/s12883-016-0768-z] [PMID] [PMCID]
2. Meaney DF, Smith DH. Cellular biomechanics of central nervous system injury. Handb Clin Neurol 2015; 127:105-14. [DOI:10.1016/B978-0-444-52892-6.00007-6] [PMID] [PMCID]
3. Griffin MF, Malahias M, Hindocha S, Khan WS. Peripheral nerve injury: principles for repair and regeneration. Open Orthop J 2014; 8:199-203. [DOI:10.2174/1874325001408010199] [PMID] [PMCID]
4. Evans GR. Challenges to nerve regeneration. Semin Surg Oncol 2000; 19 (3):312-8. https://doi.org/10.1002/1098-2388(200010/11)19:3<312::AID-SSU13>3.0.CO;2-M [DOI:10.1002/1098-2388(200010/11)19:33.0.CO;2-M]
5. Geuna S, Tos P, Titolo P, Ciclamini D, Beningo T, Battiston B. Update on nerve repair by biological tubulization. J Brachial Plex Peripher Nerve Inj 2014; 9(1):3-8. [DOI:10.1186/1749-7221-9-3] [PMID] [PMCID]
6. Farjah GH, Heshmatian B, Karimipour M, Saberi A. Using eggshell membrane as nerve guide channels in peripheral nerve regeneration. Iran J Basic Med Sci 2013; 16(8):901-5. [PubMed]
7. Hudson TW, Evans GR, Schmidt CE. Engineering strategies for peripheral nerve repair. Orthop Clin North Am 2000; 31(3):485-98. [DOI:10.1016/S0030-5898(05)70166-8]
8. Crouzier T, McClendon T, Tosun Z, McFetridge PS. Inverted human umbilical arteries with tunable wall thicknesses for nerve regeneration. J Biomed Mater Res A 2009; 89(3):818-28. [DOI:10.1002/jbm.a.32103] [PMID]
9. Farjah GH, Dolatkhah MA, Pourheidar B, Heshmatian B. The effect of cerebro-spinal fluid in collagen guide channel on sciatic nerve regeneration in rat. Turk Neurosurg 2017; 27(3):453-9. [DOI:10.15406/mojap.2016.02.00047]
10. Konofaos P, Ver Halen JP. Nerve repair by means of tubulization: past, present, future. J Reconstr Microsurg 2013; 29 (3): 149-64. [DOI:10.1055/s-0032-1333316] [PMID]
11. Liao IC, Wan H, Qi S, Cui C, Patel P, Sun W, et al. Preclinical evaluations of cellular biological conduits for peripheral nerve regeneration. J Tissue Eng 2013; 4:2041731413481036. [DOI:10.1177/2041731413481036] [PMID] [PMCID]
12. Roque JS, Pomini KT, Buchaim RL, Buchaim DV, Andreo JC, Roque DD, et al. Inside-out and standard vein grafts associated with platelet-rich plasma (PRP) in sciatic nerve repair. A histomorphometric study. Acta Cir Bras 2017; 32(8): 617-25. [DOI:10.1590/s0102-865020170080000003] [PMID]
13. Wang X, Luo E, Li Y, Hu J. Schwann-like mesenchymal stem cells within vein graft facilitate facial nerve regeneration and remyelination. Brain Res 2011; 1383:71-80. [DOI:10.1016/j.brainres.2011.01.098] [PMID]
14. Steger CM, Bonaros N, Bonatti J, Schachner T. Vein graft disease in a knockout mouse model of hyperhomocysteinaemia. Int J Exp Pathol 2016; 97(6): 447-56. [DOI:10.1111/iep.12215] [PMID] [PMCID]
15. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton,s jelly of the human umbilical cord. Stem. Cells 2004; 22(7): 1330-7. [DOI:10.1634/stemcells.2004-0013] [PMID]
16. Daniel J, Abe K, McFetridge PS. Development of the human umbilical vein scaffold for cardiovascular tissue engineering applications. ASAIO J 2005; 51(3):252-61. [DOI:10.1097/01.MAT.0000160872.41871.7E] [PMID]
17. Hoenicka M, Lehle K, Jacobs VR, Schmid FX, Birnbaum DE. Properties of the human umbilical vein as a living scaffold for a tissue-engineered vessel graft. Tissue Eng 2007; 13(1):219-29. [DOI:10.1089/ten.2006.0121] [PMID]
18. Abousleiman RI, Reyes Y, McFetridge P, Sikavitsas V. The human umbilical vein: a novel scaffold for musculoskeletal soft tissue regeneration. Artif Organs 2008 32(9):735-42. [DOI:10.1111/j.1525-1594.2008.00598.x] [PMID]
19. Farjah GH, Hadavi P, Pourheidar B, Zirak Javanmard M, Heshmatian B. Using human umbilical vein as nerve guide channels in sciatic nerve regeneration of rat. J North Khorasan Uni Med Sci 2016; 7(4):885-95. [DOI:10.29252/jnkums.7.4.885]
20. Gui L, Muto A, Chan SA, Breuer SA, Niklason LE. Development of decellularized human umbuilical arteries as small-diameter vascular grafts. Tissue Eng Part A 2009; 15(9): 2665-76. [DOI:10.1089/ten.tea.2008.0526] [PMID] [PMCID]
21. Underwood MA, Gilbert WM, Sheman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol 2005; 25(5):341-8. [DOI:10.1038/sj.jp.7211290] [PMID]
22. Shaw SW, David AL, De Coppi P. Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol 2011; 23(2):109-16. [DOI:10.1097/GCO.0b013e32834457b1] [PMID]
23. McFetridge PS, Daniel JW, Bodamyali T, Horrocks M, Chaudhuri JB. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A 2004; 70(2):224-34. [DOI:10.1002/jbm.a.30060] [PMID]
24. Gutiérrez-García AG, Contreras CM, Vásquez-Hernández DI. Amniotic fluid or its fatty produce actions similar on lateral septal neurons firing rate. ScientificWorld Journal. 2013; 534807. [DOI:10.1155/2013/534807] [PMID] [PMCID]
25. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 1989; 83(1): 129-38. https://doi.org/10.1097/00006534-198901000-00024 [DOI:10.1097/00006534-198901000-00025] [PMID]
26. Farjah GH, Fazli F. The effect of chick embryo amniotic fluid on sciatic nerve regeneration of rats. Iran J Vet Res 2015; 16(2):167-71. [PubMed]
27. Lu DY, Chen EY, Wong DJ, Yamamoto K, Protack CD, Williams WT, et al. Vein graft adaptation and fistula maturation in the arterial environment. J Surg Res 2014; 188(1):162-73. [DOI:10.1016/j.jss.2014.01.042] [PMID] [PMCID]
28. Loesch A, Dashwood MR. Vasa vasorum inside out/outside in communication: a potential role in the patency of saphenous vein coronary artery bypass grafts. J Cell Common Signal 2018; 12(4):631-43. [DOI:10.1007/s12079-018-0483-1] [PMID] [PMCID]
29. Allet MA, Leite VM, Albertoni WA, Fernandes FAS, Fernandes M, Faloppa F. Graft versus graft covered with vein conduits in nerve repairs. Rev Bras Ortop 2003; 38:193-200.
30. Sobolewski K, Malkowski A, Bankowski E, Jaworski S. Wharton's jelly as a reservoir of peptide growth factors. Placenta 2005; 26:747-52. [DOI:10.1016/j.placenta.2004.10.008] [PMID]
31. Bankowski E, Sobolewski K, Romanowicz L, Chyczewski L, Jaworski S. Collagen and glycosaminoglycans of wharton's jelly and their alterations in EPH-gestosis. Eur J Obstet Gynecol Reprod Biol 1996; 66:109-17. [DOI:10.1016/0301-2115(96)02390-1]
32. Pierucci A, Duek EA, de Oliveira AL. Expression of basal lamina components by Schwann cells cultured on poly(lactic acid) (PLLA) and poly(caprolactone) (PCL) membranes. J Mater Sci Mater Med 2009; 20(2):489-95. [DOI:10.1007/s10856-008-3614-z] [PMID]
33. Minge D, Senkov O, Kaushik R, Herde MK, Tikhobrazova O, Wulff AB, et al. Heparan sulfates support pyramidal cell excitability, synaptic plasticity, and context discrimination. Cereb Cortex 2017; 27(2):903-18. [DOI:10.1093/cercor/bhx003] [PMID] [PMCID]
34. Rickard SM, Mummery RS, Mulloy B, Rider CC. The binding of human glial cell line-derived neurotrophic factor to heparin and heparan sulfate: importance of 2-O-sulfate groups and effect on its interaction with its receptor, GFRalpha1. Glycobiology 2003; 13(6):419-26. [DOI:10.1093/glycob/cwg046] [PMID]
35. Li R, Liu H, Huang H, Bi W, Yan R, Tan X, et al. Chitosan conduit combined with hyaluronic acid prevent sciatic nerve scar in a rat model of peripheral nerve crush injury. Mol Med Rep 2018; 17(3):4360-8. [DOI:10.3892/mmr.2018.8388] [PMID] [PMCID]
36. Levine MH, Yates KE, Kaban LB. Nerve growth factor is expressed in rat femoral vein. J Oral Maxillofac Surg2002; 60(7):729-33. [DOI:10.1053/joms.2002.33237] [PMID]
37. Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg 2004; 40(1):146-53. [DOI:10.1016/j.jvs.2004.03.033] [PMID]
38. Leaf A, Xiao YF, Kang JX. Interactions of n-3 fatty acids with ion channels in excitable tissues. Prostaglandins Leukot Essent Fatty Acids 2002; 67(2-3):113-20. [DOI:10.1054/plef.2002.0407] [PMID]
39. Chan JR, Watkins TA, Cosgaya JM, Zhang C, Chen L, Reichardt LF, et al. NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 2004; 43(2):183-91. [DOI:10.1016/j.neuron.2004.06.024] [PMID] [PMCID]
40. González Porto SA, Domenech N, Blanco FJ, Centeno Cortés A, Rivadulla Fernández Álvarez Jorge Á, Sánchez IbáñJ, et al. Intraneural IGF-1 in cryopreserved nerve isografts increase neural regeneration and functional recovery in the rat sciatic nerve. Neurosurgery 2019; 85(3):423-31.doi:10.1093/neuros/nyy339. [DOI:10.1093/neuros/nyy339] [PMID]
41. Yan ZJ, Hu YQ, Zhang HT, Zhang P, Xiao ZY, Sun XL, et al. Comparison of the neural differentiation potential of human mesenchymal stem cells from amniotic fluid and adult bone marrow. Cell Mol Neurobiol 2013; 33(4):465-75. [DOI:10.1007/s10571-013-9922-y] [PMID]
42. Muratori L, Gnavi S, Fregnan F, Mancardi A, Raimondo S, Perroteau I, et al. Evaluation of vascular endothelial growth factor (VEGF) and its family member expression after peripheral nerve regeneration and denervation. Anat Rec (Hoboken) 2018; 301(10):1646-56. [DOI:10.1002/ar.23842] [PMID]
43. Sulaiman W, Nguyen DH. Transforming growth factor beta 1, a cytokine with regenerative functions. Neural Regen Res 2016; 11(10):1549-52. [DOI:10.4103/1673-5374.193223] [PMID] [PMCID]
44. Pan HC, Yang DY, Chiu YT, Lai SZ, Wang YC, Chang MH, et al. Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell. J Clin Neurosci 2006; 13(5):570-5. [DOI:10.1016/j.jocn.2005.06.007] [PMID]
45. Xia XY, Huang XH, Xia YX, Zhang WH. Changes of nerve growth in amniotic fluid and correlation with ventriculomegaly. Chin Med Sci J 2011; 26(2):109-12. [DOI:10.1016/S1001-9294(11)60029-1]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb