Volume 7, Issue 3 (12-2021)                   RABMS 2021, 7(3): 122-127 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Toofani milani A, Mohammadian M, Paribananaem R. Evaluation the Anti-proliferative Effect of NVP-AUY922 in Combination with Thymoquinone in Colorectal Cancer Cell Lines. RABMS. 2021; 7 (3) :122-127
URL: http://ijrabms.umsu.ac.ir/article-1-164-en.html
Department of Biochemistry, Medicine Faculty, Tabriz Branch, Islamic Azad University, Tabriz, I.R. Iran. , toofani2020@yahoo.com
Abstract:   (254 Views)
Background & Aims:  Thymoquinone (TQ) as a natural component and the active herbal complex originate in Nigella sativa seed shows the anti-cancer effects acknowledged in the previous studies. The effects of TQ, its mechanism on colorectal cancer, and its combination with other newly chemotherapeutic agents are unclear. Heat shock protein 90 (HSP90) has been upregulated in a number of malignancies. In this survey, we have investigated the impacts of Thymoquinone and NVP-AUY922 (a newly defined resorcinylic isoxazole–based HSP90 inhibitor) on HT-29 colorectal cancer cell lines.
Materials & Methods: HT-29 cells were seeded and exposed to Thymoquinone and NVP-AUY922 for 24 hours in various concentrations. Cell viability (water-soluble tetrazolium-1) assay was performed. Moreover, in combination cases, various concentrations of both agents examined using cellular viability analysis.
Results: The TQ significantly inhibited cancer cell growth in colorectal cancer cell lines in various combination doses of NVP-AUY922. Treatment with TQ could augment the cytotoxicity of NVP-AUY922 against the HT-29 as compared with that of NVP-AUY922 alone.
Conclusion: Our findings suggested the anti-proliferative effects of TQ and NVP-AUY922 through cytotoxic pathway to induce cell death.
Full-Text [PDF 392 kb]   (122 Downloads)    
Type of Study: orginal article | Subject: General

References
1. Mohamadi N, Kazemi SM, Mohammadian M, Milani AT, Moradi Y, Yasemi M. Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: Anionic polymerization results. Asian Pac J Cancer Prev 2017;18(3):629. [Scopus]
2. Arshad Z, Rezapour-Firouzi S, Mohammadian M, Ebrahimifar M. The sources of essential fatty acids for allergic and cancer patients; a connection with insight into mammalian target of rapamycin: A narrative review. Asian Pac J Cancer Prev 2018;19(9):2391. [Scopus]
3. Van der Jeught K, Xu H-C, Li Y-J, Lu X-B, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol 2018;24(34):3834. [DOI:10.3748/wjg.v24.i34.3834] [PMID] [PMCID]
4. Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000;6(4):1322-7. [Scopus]
5. Showalter SL, Showalter TN, Witkiewicz A, Havens R, Kennedy EP, Hucl T, et al. Evaluating the drug-target relationship between thymidylate synthase expression and tumor response to 5-fluorouracil: Is it time to move forward? Cancer Biol Ther 2008;7(7):986-94. [DOI:10.4161/cbt.7.7.6181] [PMID] [PMCID]
6. Yaffee P, Osipov A, Tan C, Tuli R, Hendifar A. Review of systemic therapies for locally advanced and metastatic rectal cancer. J Gastrointest Oncol 2015;6(2):185. [Scopus]
7. Hammond WA, Swaika A, Mody K. Pharmacologic resistance in colorectal cancer: a review. Ther. Adv. Med. Oncol 2016;8(1):57-84. [DOI:10.1177/1758834015614530] [PMID] [PMCID]
8. Usmani SZ, Bona R, Li Z. 17 AAG for HSP90 inhibition in cancer-from bench to bedside. Curr. Mol. Med 2009;9(5):654-64. [DOI:10.2174/156652409788488757] [PMID]
9. Mohammadian M, Zeynali S, Azarbaijani AF, Ansari MHK, Kheradmand F. Cytotoxic effects of the newly-developed chemotherapeutic agents 17-AAG in combination with oxaliplatin and capecitabine in colorectal cancer cell lines. Research in pharmaceutical sciences 2017;12(6):517. [DOI:10.4103/1735-5362.217432] [PMID] [PMCID]
10. Mohammadian M, Zeynali-Moghaddam S, Ansari MHK, Rasmi Y, Azarbayjani AF, Kheradmand F. Dihydropyrimidine dehydrogenase levels in colorectal cancer cells treated with a combination of heat shock protein 90 inhibitor and oxaliplatin or capecitabine. Adv. Pharm. Bull 2019;9(3):439. [DOI:10.15171/apb.2019.052] [PMID] [PMCID]
11. Zeynali-Moghaddam S, Mohammadian M, Kheradmand F, Fathi-Azarbayjani A, Rasmi Y, Esna-Ashari O, et al. A molecular basis for the synergy between 17‑allylamino‑17‑demethoxy geldanamycin with Capecitabine and Irinotecan in human colorectal cancer cells through VEFG and MMP-9 gene expression. Gene 2019;684:30-8. [DOI:10.1016/j.gene.2018.10.016] [PMID]
12. Moradi Z, Mohammadian M, Saberi H, Ebrahimifar M, Mohammadi Z, Ebrahimpour M, et al. Anti-cancer effects of chemotherapeutic agent; 17-AAG, in combined with gold nanoparticles and irradiation in human colorectal cancer cells. DARU J. Pharm. Sci 2019;27(1):111-9. [DOI:10.1007/s40199-019-00251-w] [PMID] [PMCID]
13. Mayor-López L, Tristante E, Carballo-Santana M, Carrasco-García E, Grasso S, García-Morales P, et al. Comparative study of 17-AAG and NVP-AUY922 in pancreatic and colorectal cancer cells: are there common determinants of sensitivity? Transl. Oncol 2014;7(5):590-604. [DOI:10.1016/j.tranon.2014.08.001] [PMID] [PMCID]
14. Zhang P, Lai Z-L, Chen H-F, Zhang M, Wang A, Jia T, et al. Curcumin synergizes with 5-fluorouracil by impairing AMPK/ULK1-dependent autophagy, AKT activity and enhancing apoptosis in colon cancer cells with tumor growth inhibition in xenograft mice. J. Exp. Clin. Cancer Res 2017;36(1):1-12. [DOI:10.1186/s13046-017-0661-7] [PMID] [PMCID]
15. Motaghed M, Al-Hassan FM, Hamid SS. Cellular responses with thymoquinone treatment in human breast cancer cell line MCF-7. Pharmacogn. Res 2013;5(3):200. [DOI:10.4103/0974-8490.112428] [PMID] [PMCID]
16. Gali-Muhtasib H, Roessner A, Schneider-Stock R. Thymoquinone: a promising anti-cancer drug from natural sources. Int. J. Biochem. Cell Biol 2006;38(8):1249-53. [DOI:10.1016/j.biocel.2005.10.009] [PMID]
17. Mostofa A, Hossain MK, Basak D, Bin Sayeed MS. Thymoquinone as a potential adjuvant therapy for cancer treatment: evidence from preclinical studies. Front pharmacol 2017;8:295. [DOI:10.3389/fphar.2017.00295] [PMID] [PMCID]
18. Gali‐Muhtasib H, Ocker M, Kuester D, Krueger S, El‐Hajj Z, Diestel A, et al. Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J Cell Mol Med 2008;12(1):330-42. [DOI:10.1111/j.1582-4934.2007.00095.x] [PMID] [PMCID]
19. Lei X, Lv X, Liu M, Yang Z, Ji M, Guo X, et al. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem. Biophys. Res. Commun 2012;417(2):864-8. [DOI:10.1016/j.bbrc.2011.12.063] [PMID]
20. Woo CC, Hsu A, Kumar AP, Sethi G, Tan KHB. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PloS one 2013;8(10):e75356. [DOI:10.1371/journal.pone.0075356] [PMID] [PMCID]
21. Pazhouhi M, Sariri R, Rabzia A, Khazaei M. Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line. Iran. J. Basic Med. Sci 2016;19(8):890. [Scopus]
22. Khazaei M, Pazhouhi M. Temozolomide-mediated apoptotic death is improved by thymoquinone in U87MG cell line. Cancer Invest 2017;35(4):225-36. [DOI:10.1080/07357907.2017.1289383] [PMID]
23. Kensara OA, El-Shemi AG, Mohamed AM, Refaat B, Idris S, Ahmad J. Thymoquinone subdues tumor growth and potentiates the chemopreventive effect of 5-fluorouracil on the early stages of colorectal carcinogenesis in rats. Drug Des. Devel. Ther 2016;10:2239. [DOI:10.2147/DDDT.S109721] [PMID] [PMCID]
24. Fröhlich T, Ndreshkjana B, Muenzner JK, Reiter C, Hofmeister E, Mederer S, et al. Synthesis of novel hybrids of thymoquinone and artemisinin with high activity and selectivity against colon cancer. Chem Med Chem 2017;12(3):226-34. [DOI:10.1002/cmdc.201600594] [PMID]
25. Kundu J, Choi BY, Jeong C-H, Kundu JK, Chun K-S. Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2-and Src‑mediated phosphorylation of EGF receptor tyrosine kinase. Oncol. Rep 2014;32(2):821-8. [DOI:10.3892/or.2014.3223] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb