XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tahmasebi F, Rasoolijazi H, Barati S. A Review on Brain Evolution and Development. Journal of Research in Applied and Basic Medical Sciences 2022; 8 (3) :137-144
URL: http://ijrabms.umsu.ac.ir/article-1-192-en.html
Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran , baratishirin@yahoo.com
Abstract:   (1143 Views)
Development of human brain is the essential process in the prenatal period of human growth. The total surface of human brain area is 1820 cm2, and the average cortical thickness is 2.7 mm. We reviewed and referred to several articles in this field. Comparative studies of the primate's brain show that there are general architectural basis governing the brain growth and evolutionary development. In this study, it is discussed about the human brain development with highlighting on the main mechanisms in the embryonic stage and early postnatal life as well as the general architectural values in brain evolution from primates to now. It is suggested that neurodevelopment involves some genetic bases in the neural stem cells proliferation, cortical neurons migration, cerebral cortex folding, synaptogenesis, gliogenesis, and myelination of neural fibers.

Full-Text [PDF 536 kb]   (911 Downloads)    
Type of Study: review article | Subject: General

1. Hofman MA. Evolution of the human brain: when bigger is better. Front Neuroanat 2014;8:15. [DOI:10.3389/fnana.2014.00015] [PMID] [PMCID]
2. Godfrey RK, Gronenberg W. Brain evolution in social insects: advocating for the comparative approach. J Comp Physiol A 2019;205(1):13-32. [DOI:10.1007/s00359-019-01315-7] [PMID]
3. Hofman MA. Design principles of the human brain: an evolutionary perspective. Progress in brain research. 195: Elsevier; 2012. p. 373-90. [DOI:10.1016/B978-0-444-53860-4.00018-0] [PMID]
4. King J-R, Pescetelli N, Dehaene S. Brain mechanisms underlying the brief maintenance of seen and unseen sensory information. Neuron 2016;92(5):1122-34. [DOI:10.1016/j.neuron.2016.10.051] [PMID]
5. Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks. Nat Rev Neurosci 2018;19(1):17-33. [DOI:10.1038/nrn.2017.149] [PMID]
6. Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 2013;80(3):751-64. [DOI:10.1016/j.neuron.2013.10.002] [PMID] [PMCID]
7. Badsha F, Dahmann C. A comparative study of neocortical development between humans and great apes. Technische Universität Dresden; 2017. [URL]
8. He Z, Han D, Efimova O, Guijarro P, Yu Q, Oleksiak A, et al. Comprehensive transcriptome analysis of neocortical layers in humans, chimpanzees and macaques. Nat Neurosci 2017;20(6):886-95. [DOI:10.1038/nn.4548] [PMID]
9. Nyengaard J, Regeur L. Aging and the human neocortex. Exp Gerontol 2003;38:9599. [Google Scholar]
10. Timmler S, Simons M. Grey matter myelination. Glia 2019. [DOI:10.1002/glia.23614] [PMID]
11. Schoenemann PT, Sheehan MJ, Glotzer LD. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 2005;8(2):242-52. [DOI:10.1038/nn1394] [PMID]
12. Wang JX, Kurth-Nelson Z, Kumaran D, Tirumala D, Soyer H, Leibo JZ, et al. Prefrontal cortex as a meta-reinforcement learning system. Nat Neurosci 2018;21(6):860. [DOI:10.1038/s41593-018-0147-8] [PMID]
13. Semendeferi K, Damasio H. The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 2000;38(2):317-32. [DOI:10.1006/jhev.1999.0381] [PMID]
14. Teffer K, Semendeferi K. Human prefrontal cortex: evolution, development, and pathology. Progress in brain research. 195: Elsevier; 2012. p. 191-218. [DOI:10.1016/B978-0-444-53860-4.00009-X] [PMID]
15. Comparative Mammalian Brain Collections [Internet]. [cited 2022 May 30]. Available from: https://brainmuseum.org/. [URL]
16. Heuer K, Gulban OF, Bazin P-L, Osoianu A, Valabregue R, Santin M, et al. Evolution of neocortical folding: A phylogenetic comparative analysis of MRI from 34 primate species. Cortex 2019;118:275-91. [DOI:10.1016/j.cortex.2019.04.011] [PMID]
17. Bryant KL, Preuss TM. A comparative perspective on the human temporal lobe. Digital Endocasts: Springer; 2018. p. 239-58. [DOI:10.1007/978-4-431-56582-6_16] [PMCID]
18. Hofman MA. The fractal geometry of the human brain: an evolutionary perspective. The Fractal Geometry of the Brain: Springer; 2016. p. 169-86. [DOI:10.1007/978-1-4939-3995-4_11]
19. Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron 2015;88(5):861-77. [DOI:10.1016/j.neuron.2015.09.045] [PMID]
20. Hofman MA. Neural Networks and Cognition An Evolutionary Approach. Jap J Cogn Neurosci 2008;10(3-4):235-8. [Google Scholar]
21. Falk D, Gibson K. Evolutionary Anatomy of the Primate Cerebral Cortex [Internet]. [cited 2022 May 30]. Available from: https://www.cambridge.org/core/books/evolutionary-anatomy-of-the-primate-cerebral-cortex/BBF4FC928BB753724B560F7B1C51E893 [URL]
22. de Lussanet MH. Comment on "Cortical folding scales universally with surface area and thickness, not number of neurons". Science 2015;349(6243):74-7. [DOI:10.1126/science.aaa9101] [PMID]
23. Herculano-Houzel S. Neuronal scaling rules for primate brains: the primate advantage. Prog Brain Res 2012;195:325-40. [DOI:10.1016/B978-0-444-53860-4.00015-5] [PMID]
24. Sakai T, Matsui M, Mikami A, Malkova L, Hamada Y, Tomonaga M, et al. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain. Proceedings of the Royal Society B: Bio Sci 2013;280(1753):20122398. [DOI:10.1098/rspb.2012.2398] [PMID] [PMCID]
25. Finlay BL, Darlington RB, Nicastro N. Developmental structure in brain evolution. Behav Brain Sci 2001;24(2):263-78. https://doi.org/10.1017/S0140525X01003958 [DOI:10.1017/S0140525X01423958] [PMID]
26. Charvet CJ, Finlay BL. Embracing covariation in brain evolution: large brains, extended development, and flexible primate social systems. Prog Brain Res 2012;195:71-87. [DOI:10.1016/B978-0-444-53860-4.00004-0] [PMID] [PMCID]
27. Herculano-Houzel S, Mota B, Wong P, Kaas JH. Connectivity-driven white matter scaling and folding in primate cerebral cortex. Proc Natl Acad Sci 2010;107(44):19008-13. [DOI:10.1073/pnas.1012590107] [PMID] [PMCID]
28. Mota B, Herculano-Houzel S. How the cortex gets its folds: an inside-out, connectivity-driven model for the scaling of mammalian cortical folding. Front Neuroanat 2012;6:3. [DOI:10.3389/fnana.2012.00003] [PMID] [PMCID]
29. Ribeiro PF, Ventura-Antunes L, Gabi M, Mota B, Grinberg LT, Farfel JM, et al. The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding. Front Neuroanat 2013;7:28. [DOI:10.3389/fnana.2013.00028] [PMID] [PMCID]
30. Budday S, Sommer G, Birkl C, Langkammer C, Haybaeck J, Kohnert J, et al. Mechanical characterization of human brain tissue. Acta Biomater 2017;48:319-40. [DOI:10.1016/j.actbio.2016.10.036] [PMID]
31. Zilles K, Palomero-Gallagher N, Amunts K. Development of cortical folding during evolution and ontogeny. Trends Neurosci 2013;36(5):275-84. [DOI:10.1016/j.tins.2013.01.006] [PMID]
32. Takahashi E, Folkerth RD, Galaburda AM, Grant PE. Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb cortex 2011;22(2):455-64. [DOI:10.1093/cercor/bhr126] [PMID] [PMCID]
33. Ballabh P, Braun A, Nedergaard M. Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res 2004;56(1):117. [DOI:10.1203/01.PDR.0000130472.30874.FF] [PMID]
34. Leigh SR. Brain ontogeny and life history in Homo erectus. J Hum Evol 2006;50(1):104. [DOI:10.1016/j.jhevol.2005.02.008] [PMID]
35. Lesciotto KM, Richtsmeier JT. Craniofacial skeletal response to encephalization: How do we know what we think we know? Am J Phys Anthropol 2019;168:27-46. [DOI:10.1002/ajpa.23766] [PMID] [PMCID]
36. Li Z-Y, Wu X-J, Zhou L-P, Liu W, Gao X, Nian X-M, et al. Late Pleistocene archaic human crania from Xuchang, China. Science 2017;355(6328):969-72. [DOI:10.1126/science.aal2482] [PMID]
37. Gómez-Robles A, Smaers JB, Holloway RL, Polly PD, Wood BA. Brain enlargement and dental reduction were not linked in hominin evolution. Proceedings of the Nat Acad Sci 2017;114(3):468-73. [DOI:10.1073/pnas.1608798114] [PMID] [PMCID]
38. Albessard L, Grimaud-Hervé D, Balzeau A. Evolution of cranial and endocranial profiles in Homo species: A study in 2D geometric morphometrics. Bull Mem Soc Anthropol Paris 2016;28(3-4):118-31. [DOI:10.1007/s13219-016-0161-x]
39. Tahmasebi F, Khanehzad M, Madadi S, Hassanzadeh G. Anthropometric study of nasal parameters in Iranian University Students. Anat Sci Int 2015;12(4):167-70. [URL]
40. Florio M, Namba T, Pääbo S, Hiller M, Huttner WB. A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification. Sci Adv 2016;2(12):e1601941. [DOI:10.1126/sciadv.1601941] [PMID] [PMCID]
41. Florio M, Heide M, Pinson A, Brandl H, Albert M, Winkler S, et al. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. Elife 2018;7:e32332. [DOI:10.7554/eLife.32332] [PMID] [PMCID]
42. Hofman MA. Evolution of the human brain: from matter to mind. Handbook of Intelligence: Springer; 2015. p. 65-82. [DOI:10.1007/978-1-4939-1562-0_5] [PMCID]
43. Somel M, Liu X, Khaitovich P. Human brain evolution: transcripts, metabolites and their regulators. Nat Rev Neurosci 2013;14(2):112. [DOI:10.1038/nrn3372] [PMID]
44. Janson CH. Evolutionary ecology of primate social structure. Evol Hum Behav 2017;130:95-130. [DOI:10.4324/9780203792704-4]
45. Petersen A. Brain Maturation and Cognitive Development: Comparative and Cross-cultural Perspectives. Taylor & Francis; 2017. 472. [DOI:10.4324/9781315082028]
46. Hasson U, Chen J, Honey CJ. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn Sci 2015;19(6):304-13. [DOI:10.1016/j.tics.2015.04.006] [PMID] [PMCID]
47. Leigh SR. Brain growth, life history, and cognition in primate and human evolution. Am J Primatol 2004;62(3):139-64. [DOI:10.1002/ajp.20012] [PMID]
48. Leonard WR. Brain growth. The International Encyclopedia of Biological Anthropology. 2018:1-4. [DOI:10.1002/9781118584538.ieba0073] [PMCID]
49. Leonard WR, Snodgrass JJ, Robertson ML. Effects of brain evolution on human nutrition and metabolism. Annu Rev Nutr 2007;27:311-27. [DOI:10.1146/annurev.nutr.27.061406.093659] [PMID]
50. Raybaud C, Ahmad T, Rastegar N, Shroff M, Al Nassar M. The premature brain: developmental and lesional anatomy. Neuroradiology 2013;55(2):23-40. [DOI:10.1007/s00234-013-1231-0] [PMID]
51. Budday S, Steinmann P, Kuhl E. The role of mechanics during brain development. J Mech Phys Solids 2014;72:75-92. [DOI:10.1016/j.jmps.2014.07.010] [PMID] [PMCID]
52. Vandekar SN, Shinohara RT, Raznahan A, Roalf DR, Ross M, DeLeo N, et al. Topologically dissociable patterns of development of the human cerebral cortex. J Neurosci 2015;35(2):599-609. [DOI:10.1523/JNEUROSCI.3628-14.2015] [PMID] [PMCID]
53. Luders E, Thompson PM, Toga AW. The development of the corpus callosum in the healthy human brain. J Neurosci 2010;30(33):10985-90. [DOI:10.1523/JNEUROSCI.5122-09.2010] [PMID] [PMCID]
54. Jamann N, Jordan M, Engelhardt M. Activity-dependent axonal plasticity in sensory systems. Neuroscience 2018;368:268-82. [DOI:10.1016/j.neuroscience.2017.07.035] [PMID]
55. Budday S, Steinmann P, Kuhl E. Secondary instabilities modulate cortical complexity in the mammalian brain. Philos Mag 2015;95(28-30):3244-56. [DOI:10.1080/14786435.2015.1024184] [PMID] [PMCID]
56. Craig AM, Graf ER, Linhoff MW. How to build a central synapse: clues from cell culture. Trends Neurosci 2006;29(1):8-20. [DOI:10.1016/j.tins.2005.11.002] [PMID] [PMCID]
57. Atkinson EG. The Genetic Architecture and Evolution of Brain Cortical Folding in a Pedigreed Primate Population: Washington University; 2013. [Google Scholar]
58. Van Horn MR, Ruthazer ES. Glial regulation of synapse maturation and stabilization in the developing nervous system. Curr Opin Neurobiol 2019;54:113-9. [DOI:10.1016/j.conb.2018.10.002] [PMID]
59. Barati S, Tahmasebi F, Faghihi F. Effects of mesenchymal stem cells transplantation on multiple sclerosis patients. Neuropeptides 2020;84:102095. [DOI:10.1016/j.npep.2020.102095] [PMID]
60. Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 2003;26(10):523-30. [DOI:10.1016/j.tins.2003.08.008] [PMID]
61. Freeman MR. Specification and morphogenesis of astrocytes. Science 2010;330(6005):774-8. [DOI:10.1126/science.1190928] [PMID] [PMCID]
62. Barati S, Kashani IR, Tahmasebi F. The effects of mesenchymal stem cells transplantation on A1 neurotoxic reactive astrocyte and demyelination in the cuprizone model. J Mol Histol 2022:1-14. [DOI:10.1007/s10735-021-10046-6] [PMID]
63. Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 2008;60(3):430-40. [DOI:10.1016/j.neuron.2008.10.013] [PMID]
64. Harry GJ. Microglia during development and aging. Pharmacol Ther 2013;139(3):313-26. [DOI:10.1016/j.pharmthera.2013.04.013] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb