XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Prajapat R, Jain S. Analysis the Effectiveness of Remdesivir, Galidesivir, Sofosbuvir, Tenofovir and Ribavirin as Potential Therapeutic Drug target against SARS-Cov-2 RNA-Dependent RNA Polymerase (RdRp): An in Silico Docking Study. Journal of Research in Applied and Basic Medical Sciences 2023; 9 (3) :143-153
URL: http://ijrabms.umsu.ac.ir/article-1-261-en.html
Department of Biochemistry, Pacific Institute of Medical Sciences, Sai Tirupati University, Udaipur, Rajasthan, India , rajneesh030041@gmail.com
Abstract:   (370 Views)
Background & Aims:  The active site of RdRp-CoV is highly conserved, with two successive and surface-accessible aspartates in a beta-turn structure. Antiviral drugs Remdesivir, Galidesivir, Tenofovir, Sofosbuvir, and Ribavirin are known as inhibitors of RdRps, while lopinavir and rotinavir are known inhibitors of main protease (MPro) of coronavirus. The aim of the present study was to in silico test of the effectiveness of anti-polymerase drugs against SARS-CoV-2 RdRp, including 5 FDA-approved antiviral medications.
Materials & Methods:  RdRp-CoV (nsp12) plays an important role in virus replication; therefore, it serves as a target to development of antiviral drugs. In this study, the RdRp is modeled, validated, and then targeted using different anti-polymerase drugs that approved for use against various viruses.
Results:  The five approved drugs (Galidesivir, Remdesivir, Tenofovir, Sofosbuvir, and Ribavirin) were able to bind the SARS-CoV-2 RdRp with binding energies of 42.6, 1.7, 38.4, -1.4, and -3.9 kcal/mol, respectively. For the drug ribavirin, the only interactions established upon docking were the 11 H-bonds with F165, N459, R624, P677, N791, L460, N791, T462, N628, and T462 of the SARS-CoV-2 RdRp.
Conclusion:  The results suggest the effectiveness of Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir as potent drugs against RdRp-CoV since they tightly bind to RdRp. The availability of FDA-approved anti-RdRp drugs can help treat the infection of new variant of SARS-CoV-2 strain specifically.
Full-Text [PDF 543 kb]   (172 Downloads) |   |   Full-Text (HTML)  (149 Views)  
Type of Study: orginal article | Subject: Virology

References
1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. [DOI:10.1016/S0140-6736(20)30183-5] [PMID]
2. Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: An overview. J Chin Med Assoc 2020;83 (3):217-20. doi: 10.1097/JCMA.0000000000000270. [DOI:10.1097/JCMA.0000000000000270] [PMID] []
3. Jee Y. WHO International Health Regulations Emergency Committee for the COVID-19 outbreak. Epidemiol Health 2020; 42:e2020013. doi: 10.4178/epih.e2020013. [DOI:10.4178/epih.e2020013] [PMID] []
4. Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, Munawar N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 2020;18(1):275. doi: 10.1186/s12967-020-02439-0. [DOI:10.1186/s12967-020-02439-0] [PMID] []
5. Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed 2020;91(1):157-60. doi: 10.23750/abm.v91i1.9397. [PMID]
6. Lau SK, Li KS, Huang Y, Shek CT, Tse H, Wang M, Choi GK, Xu H, Lam CS,Guo R, Chan KH. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome related Rhinolophus bat coronavirus in China reveals bats as a reservoir for acute, self-limiting infection that allows recombination events. J Virol 2010;84:2808-19. [DOI:10.1128/JVI.02219-09] [PMID] []
7. Baj J, Karakuła-Juchnowicz H, Teresiński G, Buszewicz G, Ciesielka M, Sitarz R, Forma A, Karakuła K, Flieger W, Portincasa P, Maciejewski R. COVID-19: Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. J Clin Med 2020;9(6):1753. doi: 10.3390/jcm9061753. [DOI:10.3390/jcm9061753] [PMID] []
8. Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, Spijker R, Hooft L, Emperador D, Domen J, Tans A, Janssens S, Wickramasinghe D, Lannoy V, Horn SRA, Van den Bruel A; Cochrane COVID-19 Diagnostic Test Accuracy Group. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database Syst Rev 2022;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. [DOI:10.1002/14651858.CD013665.pub3] [PMID] []
9. Abdelrahman Z, Li M and Wang X. Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Front Immunol 2020;11:552909. doi: 10.3389/fimmu.2020.552909. [DOI:10.3389/fimmu.2020.552909] [PMID] []
10. Malik YA. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol 2020;42(1):3-11. [Google Scholar]
11. Lai MM, Baric RS, Makino S, Keck JG, Egbert J, Leibowitz JL, Stohlman SA. Recombination between nonsegmented RNA genomes of murine coronaviruses. J Virol 1985;56:449-56. [DOI:10.1128/jvi.56.2.449-456.1985] [PMID] []
12. Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep 2020;19:100682. doi: 10.1016/j.genrep.2020.100682. [DOI:10.1016/j.genrep.2020.100682] [PMID] []
13. Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, Atif SM, Hariprasad G, Hasan GM, Hassan MI. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 2020;1866(10):165878. doi: 10.1016/j.bbadis.2020.165878. [DOI:10.1016/j.bbadis.2020.165878] [PMID] []
14. Woo PC, Huang Y, Lau SK, Tsoi HW, Yuen KY. In silico analysis of ORF1ab in coronavirus HKU1 genome reveals a unique putative cleavage site of coronavirus HKU1 3C-like protease. Microbiol Immunol 2005;49:899-908. [DOI:10.1111/j.1348-0421.2005.tb03681.x] [PMID] []
15. Xu X, Liu Y, Weiss S, Arnold E, Sarafianos SG, Ding J. Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res 2003;31:7117-30. [DOI:10.1093/nar/gkg916] [PMID] []
16. Hansen JL, Long AM, Schultz SC. Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 1997;5:1109-22. [DOI:10.1016/S0969-2126(97)00261-X] [PMID]
17. S. Doublie, T. Ellenberger, The mechanism of action of T7 DNA polymerase, Curr Opin Struct Biol 1998;8:704-712. [DOI:10.1016/S0959-440X(98)80089-4] [PMID]
18. Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci 2020; 248:117477. doi: 10.1016/j.lfs.2020.117477. [DOI:10.1016/j.lfs.2020.117477] [PMID] []
19. Elfiky AA, Ismail AM. Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures. SAR QSAR Environ Res 2018; 29(5): 409-18. doi: 10.1080/1062936X.2018.1454981 [DOI:10.1080/1062936X.2018.1454981] [PMID]
20. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R, Ray AS, Cihlar T, Siegel D, Mackman RL, Clarke MO, Baric RS, Denison MR. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio 2018;9(2):e00221-18. doi: 10.1128/mBio.00221-18. [DOI:10.1128/mBio.00221-18] [PMID] []
21. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3):269-71. doi: 10.1038/s41422-020-0282-0 [DOI:10.1038/s41422-020-0282-0] [PMID]
22. Kim UJ, Won EJ, Kee SJ, Jung SI, Jang HC. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antivir Ther 2016;21(5):455-9. doi: 10.3851/IMP3002. [DOI:10.3851/IMP3002] [PMID]
23. Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, Spahn JE, Bauer L, Sellers S, Porter D, Feng JY, Cihlar T, Jordan R, Denison MR, Baric RS. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020;11(1):222. doi: 10.1038/s41467-019-13940-6. [DOI:10.1038/s41467-019-13940-6] [PMID] []
24. Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in-silico perspective. J Biomol Struct Dyn 2021;39(9):3204-12. doi: 10.1080/07391102.2020. [DOI:10.1080/07391102.2020.1761882] [PMID] []
25. Elfiky AA. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci 2020;253:117592. doi: 10.1016/j.lfs.2020.117592. [DOI:10.1016/j.lfs.2020.117592] [PMID]
26. Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N, Tsatsakis A. Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). Int J Mol Med 2020;46(2):467-88. doi: 10.3892/ijmm.2020.4608 [DOI:10.3892/ijmm.2020.4608] [PMID] []
27. Keni R, Alexander A, Nayak PG, Mudgal J, Nandakumar K. COVID-19: Emergence, Spread, Possible Treatments, and Global Burden. Front Public Health 2020;8:216. doi: 10.3389/fpubh.2020.00216. [DOI:10.3389/fpubh.2020.00216] [PMID] []
28. Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, Munawar N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 2020;18(1):275. doi: 10.1186/s12967-020-02439-0. [DOI:10.1186/s12967-020-02439-0] [PMID] []
29. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003;31(13):3381-5. doi: 10.1093/nar/gkg520. [DOI:10.1093/nar/gkg520] [PMID] []
30. Messaoudi A, Belguith H, Ben Hamida J. Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theor Biol Med Model 2013;10:22. doi: 10.1186/1742-4682-10-22. [DOI:10.1186/1742-4682-10-22] [PMID] []
31. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283-91. doi: 10.1107/S0021889892009944. [DOI:10.1107/S0021889892009944]
32. Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991; 253:164-70. doi: 10.1126/science.1853201. [DOI:10.1126/science.1853201] [PMID]
33. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2:1511-19. doi: 10.1002/pro.5560020916. [DOI:10.1002/pro.5560020916] [PMID] []
34. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB 3rd, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 2018;27(1):293-315. doi: 10.1002/pro.3330. [DOI:10.1002/pro.3330] [PMID] []
35. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010;66(Pt-1):12-21. doi: 10.1107/S0907444909042073. [DOI:10.1107/S0907444909042073] [PMID] []
36. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007;35: W407-10. doi: 10.1093/nar/gkm290. [DOI:10.1093/nar/gkm290] [PMID] []
37. Murail S, de Vries SJ, Rey J, Moroy G, Tufféry P. SeamDock: An Interactive and Collaborative Online Docking Resource to Assist Small Compound Molecular Docking. Front Mol Biosci 2021;8:716466. doi: 10.3389/fmolb.2021. [DOI:10.3389/fmolb.2021.716466] [PMID] []
38. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25(17):3389-402. doi: 10.1093/nar/25.17.3389. [DOI:10.1093/nar/25.17.3389] [PMID] []
39. Croll TI, Williams CJ, Chen VB, Richardson DC, Richardson JS. Improving SARS-CoV-2 structures: Peer review by early coordinate release. Biophys J 2021;120(6):1085-96. doi: 10.1016/j.bpj.2020.12.029. [DOI:10.1016/j.bpj.2020.12.029] [PMID] []
40. Rice DW, Eisenberg D. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence. J Mol Biol 1997;267(4):1026-38. doi: 10.1006/jmbi.1997.0924. [DOI:10.1006/jmbi.1997.0924] [PMID]
41. Waghmare S, Buxi A, Nandurkar Y, Shelke A, Chavan R. In silico sequence analysis, homology modeling and function annotation of leishmanolysin from Leishmania donovani. J Parasit Dis 2016; 40(4):1266-9. doi: 10.1007/s12639-015-0665-1. [DOI:10.1007/s12639-015-0665-1] [PMID] []
42. Davis IW, Murray LW, Richardson JS, Richardson DC. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 2004;32: W615-9. doi: 10.1093/nar/gkh398. [DOI:10.1093/nar/gkh398] [PMID] []
43. Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics 2020; 36(6):1765-71. doi: 10.1093/bioinformatics/btz828. [DOI:10.1093/bioinformatics/btz828] [PMID] []
44. Khater I, Nassar A. Potential antiviral peptides targeting the SARS-CoV-2 spike protein. BMC Pharmacol Toxicol 2022;23(1):91. doi: 10.1186/s40360-022-00627-w [DOI:10.1186/s40360-022-00627-w] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb