Ethics code: IR.TBZMED.REC.1396.866


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hesam Shariati M B, Niknafs B, Shokrzadeh N. Fludrocortisone improves endometrial receptivity by regulating expression of ENaC, SGK1, HAND2, miR-200a, miR-145, miR-451, mTOR, and 4E-BP1 during the implantation window in mice. Journal of Research in Applied and Basic Medical Sciences 2024; 10 (2) :154-168
URL: http://ijrabms.umsu.ac.ir/article-1-319-en.html
Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran , shokrzadeh.n@umsu.ac.ir
Abstract:   (276 Views)
Background & Aims: This study investigated the effect of fludrocortisone treatment on the expression of genes and proteins involved in the implantation process in mice.
Materials & Methods: The study involved four groups of mice, and mRNA and protein expression were measured using real-time PCR and western blotting.
Results: The results showed that fludrocortisone treatment slightly downregulated the expression of SGK1, ENaC-α, miR-145, and miR-200a, while slightly upregulating the expression of HAND2, miR-451, mTOR, and 4E-BP1 in the endometrial epithelium. mTOR kinase inhibitor PP242 treatment resulted in the upregulation of miR-145 and miR-200a, while partially downregulating the expression of p-4E-BP1, mTOR, SGK1, ENaC-α, HAND2, and miR-451 expression. Combination therapy of fludrocortisone and PP242 resulted in slightly decreased expression of ENaC, SGK1, miR-200a, miR-145, and 4E-BP1, while slightly upregulating the expression of miR-451 and HAND2 in the epithelial endometrium.
Conclusion: The findings indicated that fludrocortisone did not disrupt endometrial receptivity and may even enhance it by modulating gene expression through the activation of the mTOR signaling pathway. Overall, the study suggests that fludrocortisone treatment can modulate the expression of genes and proteins involved in the implantation process in mice. The activation of the mTOR signaling pathway was also increased during the treatment. The findings indicate that fludrocortisone may increase endometrial receptivity without disrupting it, which could have implications for fertility treatment.
 
Full-Text [PDF 778 kb]   (75 Downloads) |   |   Full-Text (HTML)  (54 Views)  
Type of Study: orginal article | Subject: General

References
1. Shokrzadeh N. Semi-quantitative analysis of endometrial receptivity marker mRNA expression in the mid-secretory endometrium of patients with uterine fibromas. Afr J Biotechnol 2012;11(23). http://dx.doi.org/10.5897/ajb11.4072 [DOI:10.5897/AJB11.4072]
2. Zhang S, Kong S, Lu J, Wang Q, Chen Y, Wang W, et al. Deciphering the molecular basis of uterine receptivity. Mol Reprod Dev 2013;80(1):8-21. http://dx.doi.org/10.1002/mrd.22118 [DOI:10.1002/mrd.22118] [PMID]
3. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med 2001;345(19):1400-8. http://dx.doi.org/10.1056/NEJMra000763 [DOI:10.1056/NEJMra000763] [PMID]
4. Shokrzadeh N, Saidijam M, Dehghan A, Esna-Ashari F, Sanoee MF, Bahmanzadeh M, et al. Semi-quantitative analysis of endometrial HOXA10 and BTEB1 mRNA expressions in the implantation window of patients with endometriosis and myoma. Tehran Univ Med J 2012;69(10):605-12. [Google Scholar]
5. Wilcox AJ, Weinberg CR, O'Connor JF, Baird DD, Schlatterer JP, Canfield RE, et al. Incidence of early loss of pregnancy. N Engl J Med 1988;319(4):189-94. http://dx.doi.org/10.1056/NEJM198807283190401 [DOI:10.1056/NEJM198807283190401] [PMID]
6. Niknafs B, Afshari F, Dezfulian AR. Morphological and morphometrical changes of endometrim after application of estrogen and progesterone during luteal phase in the superovulated mice. Iran J Reprod Med 2008;6(3):133-42. [Google Scholar]
7. Toth B, Würfel W, Germeyer A, Hirv K, Makrigiannakis A, Strowitzki T, et al. Ion channels in the endometrium: regulation of endometrial receptivity and embryo implantation. J Reprod Immunol 2011;90(1):517-29. [DOI:10.1016/j.jri.2011.05.002] [PMID]
8. Ruan YC, Chen H, Chan HC. Ion channels in the endometrium: regulation of endometrial receptivity and embryo implantation. Hum Reprod Update 2014;20(4):517-29. http://dx.doi.org/10.1093/humupd/dmu006 [DOI:10.1093/humupd/dmu006] [PMID]
9. Ruan YC, Guo JH, Liu X, Zhang R, Tsang LL, Dong D. Activation of the epithelial Na+ channel triggers prostaglandin E 2 release and production required for embryo implantation. Nat Med 2012;18(7). [DOI:10.1038/nm.2771] [PMID]
10. Salleh N, Baines DL, Naftalin RJ, Milligan SR. The hormonal control of uterine luminal fluid secretion and absorption. J Membr Biol 2005;206(1):17-28. http://dx.doi.org/10.1007/s00232-005-0770-7 [DOI:10.1007/s00232-005-0770-7] [PMID]
11. Naftalin RJ, Thiagarajah JR, Pedley KC, Pocock VJ, Milligan SR. Progesterone stimulation of fluid absorption by the rat uterine gland. J Reprod Fertil 2002;123(5):633-8. http://dx.doi.org/10.1530/rep.0.1230633 [DOI:10.1530/rep.0.1230633] [PMID]
12. Salker MS, Steel JH, Hosseinzadeh Z, Nautiyal J, Webster Z, Singh Y, et al. Activation of SGK1 in endometrial epithelial cells in response to PI3K/AKT inhibition impairs embryo implantation. Cell Physiol Biochem 2016;39(5):2077-87. http://dx.doi.org/10.1159/000447903 [DOI:10.1159/000447903] [PMID]
13. Lang F, Pearce D. Regulation of the epithelial Na+ channel by the mTORC2/SGK1 pathway. Nephrol Dial Transplant 2016;31(2):200-5. http://dx.doi.org/10.1093/ndt/gfv270 [DOI:10.1093/ndt/gfv270] [PMID] []
14. Arroyo JP, Lagnaz D, Ronzaud C, Vázquez N, Ko BS, Moddes L. Nedd4-2 modulates renal Na+-Cl− cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J Am Soc Nephrol 2011; [DOI:10.1681/ASN.2011020132] [PMID] []
15. Gentilini D, Busacca M, Francesco D, Vignali S, Vigano M, Blasio D, et al. Akt and ERK1/2 signaling pathways are involved in endometrial cell migration induced by 17β-estradiol and growth factors. Mol Hum Reprod 2007;13(5):317-22. [DOI:10.1093/molehr/gam001] [PMID]
16. Wang CY, Tsai AC, Peng CY, Chang YL, Lee KH, Teng CM, et al. Dehydrocostuslactone suppresses angiogenesis in vitro and in vivo through inhibition of Akt/GSK-3β and mTOR signaling pathways. PLoS One 2012;7(2):e31195. http://dx.doi.org/10.1371/journal.pone.0031195 [DOI:10.1371/journal.pone.0031195] [PMID] []
17. Vemulapalli S, Mita A, Alvarado Y, Sankhala K, Mita M. The emerging role of mammalian target of rapamycin inhibitors in the treatment of sarcomas. Target Oncol 2011;6(1):29-39. http://dx.doi.org/10.1007/s11523-011-0179-4 [DOI:10.1007/s11523-011-0179-4] [PMID]
18. Li Q, Kannan A, DeMayo FJ, Lydon JP, Cooke PS, Yamagishi H, et al. The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science 2011;331(6019):912-6. http://dx.doi.org/10.1126/science.1197454 [DOI:10.1126/science.1197454] [PMID] []
19. Huyen D, Bany B. Evidence for a Conserved Function of Heart-and Neural Crest Derivatives-Expressed Transcript 2 (Hand2) in Mouse and Human Decidualization. Reproduction. 2011;142(2). [DOI:10.1530/REP-11-0060] [PMID] []
20. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012;18(12):1754-67. http://dx.doi.org/10.1038/nm.3012 [DOI:10.1038/nm.3012] [PMID] []
21. Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics: MicroRNAs AS BIOMARKERS FOR DIAGNOSTICS. J Cell Physiol 2016;231(1):25-30. http://dx.doi.org/10.1002/jcp.25056 [DOI:10.1002/jcp.25056] [PMID] []
22. Pichler M, Ress AL, Winter E, Stiegelbauer V, Karbiener M, Schwarzenbacher D, et al. MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients. Br J Cancer 2014;110(6):1614-21. http://dx.doi.org/10.1038/bjc.2014.51 [DOI:10.1038/bjc.2014.51] [PMID] []
23. Jimenez PT, Mainigi MA, Word RA, Kraus WL, Mendelson CR. MiR-200 regulates endometrial development during early pregnancy. Mol Endocrinol 2016;30(9):977-87. http://dx.doi.org/10.1210/me.2016-1050 [DOI:10.1210/me.2016-1050] [PMID] []
24. Kang YJ, Lees M, Matthews LC, Kimber SJ, Forbes K, Aplin JD. MiR-145 suppresses embryo-epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J Cell Sci 2015;128(4):804-14. http://dx.doi.org/10.1242/jcs.164004 [DOI:10.1242/jcs.164004] [PMID]
25. Hull ML, Nisenblat V. Tissue and circulating microRNA influence reproductive function in endometrial disease. Reprod Biomed Online 2013;27(5):515-29. http://dx.doi.org/10.1016/j.rbmo.2013.07.012 [DOI:10.1016/j.rbmo.2013.07.012] [PMID]
26. Hoang B, Benavides A, Shi Y, Yang Y, Frost P, Gera J, et al. The PP242 mammalian target of rapamycin (mTOR) inhibitor activates extracellular signal-regulated kinase (ERK) in multiple myeloma cells via a target of rapamycin complex 1 (TORC1)/eukaryotic translation initiation factor 4E (eIF-4E)/RAF pathway and activation is a mechanism of resistance. J Biol Chem 2012;287(26):21796-805. http://dx.doi.org/10.1074/jbc.M111.304626 [DOI:10.1074/jbc.M111.304626] [PMID] []
27. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004;23(18):3151-71. http://dx.doi.org/10.1038/sj.onc.1207542 [DOI:10.1038/sj.onc.1207542] [PMID]
28. Shokrzadeh N, Alivand MR, Abedelahi A, Shariati H, Niknafs MB. Upregulation of HB-EGF, Msx. 1, and miRNA Let-7a by administration of calcitonin through mTOR and ERK1/2 pathways during a window of implantation in mice. Mol Reprod Dev 2018;85:790-801. [DOI:10.1002/mrd.23061] [PMID]
29. Chen X, He J, Ding Y, Zeng L, Gao R, Cheng S, et al. The role of MTOR in mouse uterus during embryo implantation. J Reprod Fertil 2009;138(2):351-6. http://dx.doi.org/10.1530/REP-09-0090 [DOI:10.1530/REP-09-0090] [PMID]
30. Kim DM, Chung JH, Yoon SH, Kim HL. Effect of fludrocortisone acetate on reducing serum potassium levels in patients with end-stage renal disease undergoing haemodialysis. Nephrol Dial Transplant 2007;22(11):3273-6. http://dx.doi.org/10.1093/ndt/gfm386 [DOI:10.1093/ndt/gfm386] [PMID]
31. Whitten WK. The effect of removal of the olfactory bulbs on the gonads of mice. J Endocrinol 1956;14(2):160-3. http://dx.doi.org/10.1677/joe.0.0140160 [DOI:10.1677/joe.0.0140160] [PMID]
32. Thomas CP, Liu KZ, Vats HS. Medroxyprogesterone acetate binds the glucocorticoid receptor to stimulate α-ENaC and sgk1 expression in renal collecting duct epithelia. Am J Physiol-Renal Physiol 2006;290(2):F306-12. [DOI:10.1152/ajprenal.00062.2005] [PMID]
33. Gleason CE, Frindt G, Cheng CJ, Ng M, Kidwai A, Rashmi P, et al. mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity. J Clin Invest 2015;125(1):117-28. http://dx.doi.org/10.1172/JCI73935 [DOI:10.1172/JCI73935] [PMID] []
34. Singh M, Chaudhry P, Asselin E. Bridging endometrial receptivity and implantation: network of hormones, cytokines, and growth factors. J Endocrinol 2011;210(1):5-14. http://dx.doi.org/10.1530/JOE-10-0461 [DOI:10.1530/JOE-10-0461] [PMID]
35. Bazer FW. Uterine receptivity to implantation of blastocysts in mammals. Front Biosci (Schol Ed) 2011;S3(2):745-67. http://dx.doi.org/10.2741/s184 [DOI:10.2741/s184] [PMID]
36. Yang ZM, Le SP, Chen DB, Cota J, Siero V, Yasukawa K, et al. Leukemia inhibitory factor, LIF receptor, and gp130 in the mouse uterus during early pregnancy. Mol Reprod Dev 1995;42(4):407-14. http://dx.doi.org/10.1002/mrd.1080420406 [DOI:10.1002/mrd.1080420406] [PMID]
37. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Köntgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992;359(6390):76-9. http://dx.doi.org/10.1038/359076a0 [DOI:10.1038/359076a0] [PMID]
38. Bastu E, Mutlu MF, Yasa C, Dural O, Nehir Aytan A, Celik C, et al. Role of Mucin 1 and Glycodelin A in recurrent implantation failure. Fertil Steril 2015;103(4):1059-1064.e2. http://dx.doi.org/10.1016/j.fertnstert.2015.01.025 [DOI:10.1016/j.fertnstert.2015.01.025] [PMID]
39. Campbell EA, O'Hara L, Catalano RD, Sharkey AM, Freeman TC, Johnson MH. Temporal expression profiling of the uterine luminal epithelium of the pseudo-pregnant mouse suggests receptivity to the fertilized egg is associated with complex transcriptional changes. Hum Reprod 2006;21(10):2495-513. http://dx.doi.org/10.1093/humrep/del195 [DOI:10.1093/humrep/del195] [PMID]
40. Whirledge SD, Oakley RH, Myers PH, Lydon JP, DeMayo F, Cidlowski JA. Uterine glucocorticoid receptors are critical for fertility in mice through control of embryo implantation and decidualization. Proc Natl Acad Sci U S A 2015;112(49):15166-71. http://dx.doi.org/10.1073/pnas.1508056112 [DOI:10.1073/pnas.1508056112] [PMID] []
41. Gur C, Diav-Citrin O, Shechtman S, Arnon J, Ornoy A. Pregnancy outcome after first trimester exposure to corticosteroids: a prospective controlled study. Reprod Toxicol 2004;18(1):93-101. http://dx.doi.org/10.1016/j.reprotox.2003.10.007 [DOI:10.1016/j.reprotox.2003.10.007] [PMID]
42. Wichtel JJ, Evans LE, Clark TL. Termination of midterm pregnancy in mares using intra-allantoic dexamethasone. Theriogenology 1988;29(6):1261-7. http://dx.doi.org/10.1016/0093-691x(88)90006-4 [DOI:10.1016/0093-691X(88)90006-4]
43. Ahmadabad HN, Jafari SK, Firizi MN, Abbaspour AR, Gharib FG, Ghobadi Y, et al. Pregnancy outcomes following the administration of high doses of dexamethasone in early pregnancy. Clin Experim Reprod Med 2016;43(1). [DOI:10.5653/cerm.2016.43.1.15] [PMID] []
44. Itani OA, Liu KZ, Cornish KL, Campbell JR, Thomas CP. Glucocorticoids stimulate human sgk1 gene expression by activation of a GRE in its 5'-flanking region. Am J Physiol Endocrinol Metab 2002;283(5):E971-9. http://dx.doi.org/10.1152/ajpendo.00021.2002 [DOI:10.1152/ajpendo.00021.2002] [PMID]
45. Liu F, Aubin JE, Malaval L. Expression of leukemia inhibitory factor (LIF)/interleukin-6 family cytokines and receptors during in vitro osteogenesis: differential regulation by dexamethasone and LIF. Bone 2002;31(1):212-9. http://dx.doi.org/10.1016/s8756-3282(02)00806-2 [DOI:10.1016/S8756-3282(02)00806-2] [PMID]
46. Treon SP, Mollick JA, Urashima M, Teoh G, Chauhan D, Ogata A, et al. Muc-1 core protein is expressed on multiple myeloma cells and is induced by dexamethasone. Blood 1999;93(4):1287-98. http://dx.doi.org/10.1182/blood.v93.4.1287 [DOI:10.1182/blood.V93.4.1287] [PMID]
47. Bamberger AM, Schulte HM, Wullbrand A, Jung R, Beil FU, Bamberger CM. Expression of leukemia inhibitory factor (LIF) and LIF receptor (LIF-R) in the human adrenal cortex: implications for steroidogenesis. Mol Cell Endocrinol 2000;162(1-2):145-9. http://dx.doi.org/10.1016/s0303-7207(00)00200-8 [DOI:10.1016/S0303-7207(00)00200-8] [PMID]
48. Hey NA, Li TC, Devine PL, Graham RA, Saravelos H, Aplin JD. MUC1 in secretory phase endometrium: expression in precisely dated biopsies and flushings from normal and recurrent miscarriage patients. Hum Reprod 1995;10(10):2655-62. http://dx.doi.org/10.1093/oxfordjournals.humrep.a135762 [DOI:10.1093/oxfordjournals.humrep.a135762] [PMID]
49. Aplin JD, Hey NA, Graham RA. Human endometrial MUC1 carries keratan sulfate: characteristic glycoforms in the luminal epithelium at receptivity. Glycobiology 1998;8(3):269-76. http://dx.doi.org/10.1093/glycob/8.3.269 [DOI:10.1093/glycob/8.3.269] [PMID]
50. Brayman M, Thathiah A, Carson DD. MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod Biol Endocrinol 2004;2(1):4. http://dx.doi.org/10.1186/1477-7827-2-4 [DOI:10.1186/1477-7827-2-4] [PMID] []
51. Shariati H, Seghinsara MB, Shokrzadeh AM, Niknafs N. The effect of fludrocortisone on the uterine receptivity partially mediated by ERK1/2-mTOR pathway. J Cellular Physiol 2019;234(11):20098-110. [DOI:10.1002/jcp.28609] [PMID]
52. Shariati MBH, Niknafs B, Seghinsara AM, Shokrzadeh N, Alivand MR. Administration of dexamethasone disrupts endometrial receptivity by alteration of expression of miRNA 223, 200a, LIF, Muc1, SGK1, and ENaC via the ERK1/2-mTOR pathway. J Cell Physiol 2019;234(11):19629-39. http://dx.doi.org/10.1002/jcp.28562 [DOI:10.1002/jcp.28562] [PMID]
53. Lee K, Jeong J, Kwak I, Yu CT, Lanske B, Soegiarto DW, et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet 2006;38(10):1204-9. http://dx.doi.org/10.1038/ng1874 [DOI:10.1038/ng1874] [PMID]
54. Long JA, Evans HM. The oestrous cycle in the rat and its associated phenomena. University of California Press; 1922. [Google Book]
55. Lang F, Stournaras C. Serum and glucocorticoid inducible kinase, metabolic syndrome, inflammation, and tumor growth. Hormones (Athens) 2013;12(2):160-71. http://dx.doi.org/10.14310/horm.2002.1401 [DOI:10.14310/horm.2002.1401] [PMID]
56. Fisher SJ, Giudice LC. SGK1: a fine balancing act for human pregnancy. Nat Med 2011;17(11):1348-9. http://dx.doi.org/10.1038/nm.2549 [DOI:10.1038/nm.2549] [PMID]
57. Lou Y, Hu M, Mao L, Zheng Y, Jin F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success. FASEB J 2017;31(2):447-56. http://dx.doi.org/10.1096/fj.201600760R [DOI:10.1096/fj.201600760R] [PMID]
58. Feroze-Zaidi F, Fusi L, Takano M, Higham J, Salker MS, Goto T. Role and regulation of the serum-and glucocorticoid-regulated kinase 1 in fertile and infertile human endometrium. Endocrinology 2007;148(10):5020-9. [DOI:10.1210/en.2007-0659] [PMID]
59. Salker MS, Christian M, Steel JH, Nautiyal J, Lavery S, Trew G. Deregulation of the serum-and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat Med 2011;17(11). [DOI:10.1038/nm.2498] [PMID]
60. Pearce D, Verrey F, Chen SY, Mastroberardino L, Meijer OC, Wang J, et al. Role of SGK in mineralocorticoid-regulated sodium transport. Kidney Int 2000;57(4):1283-9. http://dx.doi.org/10.1046/j.1523-1755.2000.00963.x [DOI:10.1046/j.1523-1755.2000.00963.x] [PMID]
61. Náray-Fejes-Tóth A, Fejes-Tóth G. The sgk, an aldosterone-induced gene in mineralocorticoid target cells, regulates the epithelial sodium channel. Kidney Int 2000;57(4):1290-4. http://dx.doi.org/10.1046/j.1523-1755.2000.00964.x [DOI:10.1046/j.1523-1755.2000.00964.x] [PMID]
62. Kim SH, Kim KX, Raveendran NN, Wu T, Pondugula SR, Marcus DC. Regulation of ENaC-mediated sodium transport by glucocorticoids in Reissner's membrane epithelium. Am J Physiol Cell Physiol 2009;296(3):C544-57. http://dx.doi.org/10.1152/ajpcell.00338.2008 [DOI:10.1152/ajpcell.00338.2008] [PMID] []
63. Hinds LR, Chun LE, Woodruff ER, Christensen JA, Hartsock MJ, Spencer RL. Dynamic glucocorticoid-dependent regulation of Sgk1 expression in oligodendrocytes of adult male rat brain by acute stress and time of day. PLoS One 2017;12(4):e0175075. http://dx.doi.org/10.1371/journal.pone.0175075 [DOI:10.1371/journal.pone.0175075] [PMID] []
64. Frindt G, Palmer LG. Regulation of epithelial Na+ channels by adrenal steroids: mineralocorticoid and glucocorticoid effects. Am J Physiol Renal Physiol 2012;302(1):F20-6. http://dx.doi.org/10.1152/ajprenal.00480.2011 [DOI:10.1152/ajprenal.00480.2011] [PMID] []
65. Lu M, Wang J, Jones KT, Ives HE, Feldman ME, Yao LJ, et al. mTOR complex-2 activates ENaC by phosphorylating SGK1. J Am Soc Nephrol 2010;21(5):811-8. http://dx.doi.org/10.1681/ASN.2009111168 [DOI:10.1681/ASN.2009111168] [PMID] []
66. Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19(1):92-105. http://dx.doi.org/10.1101/gr.082701.108 [DOI:10.1101/gr.082701.108] [PMID] []
67. Shen LJ, He JL, Yang DH, Ding YB, Chen XM, Geng YQ, et al. Mmu-microRNA-200a overexpression leads to implantation defect by targeting phosphatase and tensin homolog in mouse uterus. Reprod Sci 2013;20(12):1518-28. http://dx.doi.org/10.1177/1933719113488453 [DOI:10.1177/1933719113488453] [PMID] []
68. Li R, Qiao J, Wang L, Li L, Zhen X, Liu P, et al. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod Biol Endocrinol 2011;9(1):29. http://dx.doi.org/10.1186/1477-7827-9-29 [DOI:10.1186/1477-7827-9-29] [PMID] []
69. Nothnick WB, Healy C, Hong X. Steroidal regulation of uterine miRNAs is associated with modulation of the miRNA biogenesis components Exportin-5 and Dicer1. Endocrine 2010;37(2):265-73. http://dx.doi.org/10.1007/s12020-009-9293-9 [DOI:10.1007/s12020-009-9293-9] [PMID] []
70. Li Z, Jia J, Gou J, Zhao X, Yi T. MicroRNA-451 plays a role in murine embryo implantation through targeting Ankrd46, as implicated by a microarray-based analysis. Fertil Steril 2015;103(3):834-4.e4. http://dx.doi.org/10.1016/j.fertnstert.2014.11.024 [DOI:10.1016/j.fertnstert.2014.11.024] [PMID]
71. Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod 2011;26(10):2830-40. http://dx.doi.org/10.1093/humrep/der255 [DOI:10.1093/humrep/der255] [PMID]
72. Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 1995;270(5):2320-6. http://dx.doi.org/10.1074/jbc.270.5.2320 [DOI:10.1074/jbc.270.5.2320] [PMID]
73. Mori S, Nada S, Kimura H, Tajima S, Takahashi Y, Kitamura A, et al. The mTOR pathway controls cell proliferation by regulating the FoxO3a transcription factor via SGK1 kinase. PLoS One 2014;9(2):e88891. http://dx.doi.org/10.1371/journal.pone.0088891 [DOI:10.1371/journal.pone.0088891] [PMID] []
74. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 2006;7(3):185-99. http://dx.doi.org/10.1038/nrg1808 [DOI:10.1038/nrg1808] [PMID]
75. Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR. Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 2006;281(51):39128-34. http://dx.doi.org/10.1074/jbc.M610023200 [DOI:10.1074/jbc.M610023200] [PMID]
76. Shimizu H, Arima H, Ozawa Y, Watanabe M, Banno R, Sugimura Y, et al. Glucocorticoids increase NPY gene expression in the arcuate nucleus by inhibiting mTOR signaling in rat hypothalamic organotypic cultures. Peptides 2010;31(1):145-9. http://dx.doi.org/10.1016/j.peptides.2009.09.036 [DOI:10.1016/j.peptides.2009.09.036] [PMID]
77. Weichhart T, Haidinger M, Katholnig K, Kopecky C, Poglitsch M, Lassnig C, et al. Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells. Blood 2011;117(16):4273-83. http://dx.doi.org/10.1182/blood-2010-09-310888 [DOI:10.1182/blood-2010-09-310888] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb