XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Suleiman Jada M, Umar Y, Usman Wurochekke A. Antiplasmodial activity of Azanza Garckeana root bark extract and its effect on hematological indices in plasmoduim berghei infected mice. Journal of Research in Applied and Basic Medical Sciences 2024; 10 (3) :213-223
URL: http://ijrabms.umsu.ac.ir/article-1-326-en.html
Department of Biochemistry, Faculty of Life Sciences, Modibbo Adama University, Yola, Adamawa state, Nigeria , jadasm84@gmail.com
Abstract:   (943 Views)
Background & Aims:  Malaria disease imposes a substantial global health burden, urging the search for effective treatments amid escalating drug resistance. This study investigates the antiplasmodial potential of Azanza garckeana root bark extract in Plasmodium berghei-infected mice and evaluates its impact on hematological indices.
Materials & Methods: In this experimental research, we studied on six groups of 30 mice (Groups A to F) comprising of five mice per group. Group A was only given food and water with no inoculation and treatment, B was inoculated with Plasmodium berghei but no treatment was given, C was infected and treated with artemether while D E F were infected and treated with 100mg/kg, 200mg/kg and 300mg/kg of Azanza garckeana root-bark extract respectively for 4 days. Parasitemia levels, chemo-suppressive effect and hematological parameters were assessed on four different days following the start of the treatment. The findings were expressed as mean ± SEM. One-way analysis of variance was used to find the differences between the four groups, and p < 0.05 was considered statistically significant.
Results: Phytochemical analysis revealed diverse bioactive compounds in the extract. The 4-day suppressive test demonstrated substantial antiplasmodial activity, with the 300 mg/kg dose achieving an 88.17% chemo-suppressive effect, comparable to Artemether's efficacy. Significant (p < 0.05) increases in hemoglobin, packed cell volume, red blood cells, white blood cells, and platelets were seen in hematological examinations in intervention groups, especially with the 300 mg/kg dosage.
Conclusions: Azanza garckeana root-bark extract exhibited potent antiplasmodial effects, possibly mediated by identified phytochemicals. The dose-dependent chemosuppression and modulation of hematological parameters underscore its potential as an alternative antimalarial therapy in mammals.
Full-Text [PDF 427 kb]   (609 Downloads) |   |   Full-Text (HTML)  (98 Views)  
Type of Study: orginal article | Subject: Parasitology

References
1. Oladipo HJ, Tajudeen YA, Oladunjoye IO, Yusuff SI, Yusuf RO, Oluwaseyi EM, et al. Increasing challenges of malaria control in sub-Saharan Africa: Priorities for public health research and policymakers. Ann Med Surg 2022;81. http://dx.doi.org/10.1016/j.amsu.2022.104366 [DOI:10.1016/j.amsu.2022.104366]
2. Venkatesan P. The 2023 WHO World malaria report. Lancet Microbe 2024;5(3):e214. http://dx.doi.org/10.1016/s2666-5247(24)00016-8 [DOI:10.1016/S2666-5247(24)00016-8] [PMID]
3. Nyandwaro K, Oyweri J, Kimani F, Mbugua A. Evaluating Antiplasmodial and Antimalarial Activities of Soybean (Glycine max) Seed Extracts on P. falciparum Parasite Cultures and Plasmodium berghei-Infected Mice. J. Pathog 2020:1-8. http://dx.doi.org/10.1155/2020/7605730 [DOI:10.1155/2020/7605730] [PMID] []
4. van der Pluijm RW, Amaratunga C, Dhorda M, Dondorp AM. Triple Artemisinin-Based Combination Therapies for Malaria - A New Paradigm? Trends Parasitol 2021;37(1):15-24. http://dx.doi.org/10.1016/j.pt.2020.09.011 [DOI:10.1016/j.pt.2020.09.011] [PMID]
5. Obakiro SB, Kiprop A, Kowino I, Kigondu E, Odero MP, Omara T, et al. Ethnobotany, ethnopharmacology, and phytochemistry of traditional medicinal plants used in the management of symptoms of tuberculosis in East Africa: a systematic review. Trop Med Health 2020;48(1). http://dx.doi.org/10.1186/s41182-020-00256-1 [DOI:10.1186/s41182-020-00256-1] [PMID] []
6. Maroyi A. Azanza garckeana Fruit Tree: Phytochemistry, Pharmacology, Nutritional and Primary Healthcare Applications as Herbal Medicine: A Review. Res J Med Plant 2017;11(4):115-23. http://dx.doi.org/10.3923/rjmp.2017.115.123 [DOI:10.3923/rjmp.2017.115.123]
7. Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell. 2016;167(3):610-24. http://dx.doi.org/10.1016/j.cell.2016.07.055 [DOI:10.1016/j.cell.2016.07.055] [PMID]
8. Yusuf AA, Lawal B, Sani S, Garba R, Mohammed BA, Oshevire DB, et al. Pharmacological activities of Azanza garckeana (Goron Tula) grown in Nigeria. Clin. Phytoscience. 2020;6(1). http://dx.doi.org/10.1186/s40816-020-00173-0 [DOI:10.1186/s40816-020-00173-0]
9. Momodu IB, Agoreyo BO, Okungbowa ES, Igiebor SE, Igbo IOL. Phytochemical screening and proximate composition of aqueous-methanol pulp extract of Azanza garckeana (Goron Tula). Dutse J Pure Appl Sci 2022;7(4a):194-200. http://dx.doi.org/10.4314/dujopas.v7i4a.20 [DOI:10.4314/dujopas.v7i4a.20]
10. Momodu IB, Agoreyo BO, Okungbowa ES, Igiebor SE, Igbo IOL. Phytochemical screening and proximate composition of aqueous-methanol pulp extract of Azanza garckeana (Goron Tula). Dutse J Pure Appl Sci 2022;7(4a):194-200. http://dx.doi.org/10.4314/dujopas.v7i4a.20 [DOI:10.4314/dujopas.v7i4a.20]
11. Mohammadi S, Jafari B, Asgharian P, Martorell M, Sharifi‐Rad J. Medicinal plants used in the treatment of Malaria: A key emphasis to Artemisia, Cinchona, Cryptolepis, and Tabebuia genera. Phytother Res 2020;34(7):1556-69. http://dx.doi.org/10.1002/ptr.6628 [DOI:10.1002/ptr.6628] [PMID]
12. Gujjari L, Kalani H, Pindiprolu SK, Arakareddy BP, Yadagiri G. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiol. Control 2022;17:e00244. http://dx.doi.org/10.1016/j.parepi.2022.e00244 [DOI:10.1016/j.parepi.2022.e00244] [PMID] []
13. Woodrow CJ, White NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev 2016;41(1):34-48. http://dx.doi.org/10.1093/femsre/fuw037 [DOI:10.1093/femsre/fuw037] [PMID] []
14. Hamilton A, Haghpanah F, Hasso-Agopsowicz M, Frost I, Lin G, Schueller E, et al. Malaria Vaccine Impact on Drug-Susceptible and Resistant Cases and Deaths: A Modeling Study. SSRN Electron J 2022. http://dx.doi.org/10.2139/ssrn.4231231 [DOI:10.2139/ssrn.4231231]
15. Asakitikpi A. Healthcare Coverage and Affordability in Nigeria: An Alternative Model to Equitable Healthcare Delivery. Universal Healthcare [Working Title]. 2019; http://dx.doi.org/10.5772/intechopen.85978 [DOI:10.5772/intechopen.85978]
16. Benmerache A, Berrehal D, Khalfallah A, Kabouche A, Semra Z, Kabouche Z. Total phenolic quantification, antioxidant, antibacterial activities and flavonoids of Algerian Calotropis procera (Asclepiadaceae). Der Pharm Lett 2013;5(4):204-7. [URL]
17. Evans WC. Trease and Evans' Pharmacognosy. Elsevier Health Sciences; 2009. http://books.google.ie/books?id=l7pkTFyY428C&printsec=frontcover&dq=Trease+GE,+Evans+WC.+Textbook+of+pharmacognosy.+13th+ed.+London,+UK%3B+Toronto,+Canada%3B+Tokyo,+Japan:+Bailiere+Tindall%3B+1989.+pp.+200%E2%80%931.&hl=&cd=2&source=gbs_api [GOOGLE BOOK]
18. Gitua JN, Muchiri DR, and Nguyen XA. In vivo antimalarial activity of Ajuga remota water extracts against Plasmodium berghei in mice. Southeast Asian J Trop Med Public Health 2012;43(3):545-8. [PMID]
19. Dikasso D, Makonnen E, Debella A, Abebe D, Urga K, Makonnen W, et al. In vivo anti-malarial activity of hydroalcoholic extracts from Asparagus africanus Lam. in mice infected with Plasmodium berghei. Ethiop J Health Dev 2007;20(2). http://dx.doi.org/10.4314/ejhd.v20i2.10021 [DOI:10.4314/ejhd.v20i2.10021]
20. Connelly MPE, Fabiano E, Patel IH, Kinyanjui SM, Mberu EK, Watkins WM. Antimalarial activity in crude extracts of Malawian medicinal plants. Ann Trop Med Parasitol 1996;90(6):597-602. http://dx.doi.org/10.1080/00034983.1996.11813089 [DOI:10.1080/00034983.1996.11813089] [PMID]
21. Biruksew A, Zeynudin A, Alemu Y, Golassa L, Yohannes M, Debella A, et al. Zingiber Officinale Roscoe and Echinops Kebericho Mesfin Showed Antiplasmodial Activities against Plasmodium Berghei in a Dosedependent Manner in Ethiopia. Ethiop J Health Sci 2018;28(5). http://dx.doi.org/10.4314/ejhs.v28i5.17 [DOI:10.4314/ejhs.v28i5.17] [PMID] []
22. Gebrehiwot S, Shumbahri M, Eyado A, Yohannes T. Phytochemical Screening and In Vivo Antimalarial Activity of Two Traditionally Used Medicinal Plants of Afar Region, Ethiopia, against Plasmodium berghei in Swiss Albino Mice. J Parasitol Res 2019:1-8. http://dx.doi.org/10.1155/2019/4519298 [DOI:10.1155/2019/4519298] [PMID] []
23. Bickii J, Tchouya G, Tchouankeu J, Tsamo E. Antimalarial activity in crude extracts of some Cameroonian medicinal plants. Afr J Tradit Complement Altern Med 2007;4(1). http://dx.doi.org/10.4314/ajtcam.v4i1.31200 [DOI:10.4314/ajtcam.v4i1.31200] [PMID] []
24. Lawal B, Sani S, Onikanni AS, Ibrahim YO, Agboola AR, Lukman HY, et al. Preclinical anti-inflammatory and antioxidant effects of Azanza garckeana in STZ-induced glycemic-impaired rats, and pharmacoinformatics of it major phytoconstituents. Biomed Pharmacother 2022; 152:113196. http://dx.doi.org/10.1016/j.biopha.2022.113196 [DOI:10.1016/j.biopha.2022.113196] [PMID]
25. Chaniad P, Techarang T, Phuwajaroanpong A, Plirat W, Viriyavejakul P, Septama AW, et al. Antimalarial efficacy and toxicological assessment of medicinal plant ingredients of Prabchompoothaweep remedy as a candidate for antimalarial drug development. BMC Complement Med Ther 2023; 23(1). http://dx.doi.org/10.1186/s12906-023-03835-x [DOI:10.1186/s12906-023-03835-x] [PMID] []
26. Habte G, Assefa S. In Vivo Antimalarial Activity of Crude Fruit Extract of Capsicum frutescens Var. Minima (Solanaceae) against Plasmodium berghei-Infected Mice. Biomed Res Int 2020;25:1-7. http://dx.doi.org/10.1155/2020/1320952 [DOI:10.1155/2020/1320952] [PMID] []
27. Han HS, Koo SY, Choi KY. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioactive Materials 2022;14:182-205. http://dx.doi.org/10.1016/j.bioactmat.2021.11.027 [DOI:10.1016/j.bioactmat.2021.11.027] [PMID] []
28. Firooziyan S, Osanloo M, Basseri HR, Moosa-Kazemi SH, Mohammadzadeh Hajipirloo H, Amani A, et al. Nanoemulsion of Myrtus communis essential oil and evaluation of its larvicidal activity against Anopheles stephensi. Arabian J Chem 2022;15(9):104064. http://dx.doi.org/10.1016/j.arabjc.2022.104064 [DOI:10.1016/j.arabjc.2022.104064]
29. Ofem O, Ani E, Eno A. Effect of aqueous leaves extract of Ocimum gratissimum on hematological parameters in rats. Int J Appl Basic Medl Res 2012;2(1):38. http://dx.doi.org/10.4103/2229-516x.96807 [DOI:10.4103/2229-516X.96807] [PMID] []
30. Igbinaduwa P, Usifoh C, Ugwu C. Phytochemical analysis and toxicological evaluation of the methanolic extract of Jatropha tanjorensis leaf. J Pharm Bioresour 2012;8(2). http://dx.doi.org/10.4314/jpb.v8i2.4 [DOI:10.4314/jpb.v8i2.4]
31. Malech HL, DeLeo FR, Quinn MT. The Role of Neutrophils in the Immune System: An Overview. Neutrophil Methods Protocols 2014;3-10. http://dx.doi.org/10.1007/978-1-62703-845-4_1 [DOI:10.1007/978-1-62703-845-4_1] [PMID] []
32. Donnelly EL, Céspedes N, Hansten G, Wagers D, Briggs AM, Lowder C, et al. Basophil Depletion Alters Host Immunity, Intestinal Permeability, and Mammalian Host-to-Mosquito Transmission in Malaria. ImmunoHorizons 2022;6(8):581-99. http://dx.doi.org/10.4049/immunohorizons.2200055 [DOI:10.4049/immunohorizons.2200055] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb