XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sürmeli T, Duran H E. Examination of Glutathione S-Transferase (GST) enzyme levels and some biochemical parameters in coronary artery patients. Journal of Research in Applied and Basic Medical Sciences 2024; 10 (2) :191-204
URL: http://ijrabms.umsu.ac.ir/article-1-332-en.html
Faculty of Medicine, Department of Medical Biochemistry, Kafkas University, Kars, Turkey 36100, Turkey , haticeesra4990@gmail.com
Abstract:   (465 Views)
Background & Aims:  Heart diseases stand out as a leading cause of death. Specific enzymes are active eliminators of toxic substances from the body. One of the crucial enzymes in this process is Glutathione S-Transferase (GST). In this study, GST activities were determined in individuals with and without coronary artery, and the relationship between some biochemistry tests and GST activity was examined.
Materials & Methods: This case-control study was conducted on 54 patients with CAD and 54 people without CAD with matched age and sex as control group. Biochemical parameters were measured on an autoanalyzer, and GST enzyme activity was measured on a spectrophotometer. All parameters were examined statistically in line with the data obtained. Data were analyzed by SPSS v.20. A p-value less than 0.05 was considered statistically significant
Results: Accordingly, while there was a statistically significant difference in the GST enzyme activity and HDL-C levels, there was no statistically significant difference in total cholesterol, triglycerides, LDL-C, urea, creatinine and CRP levels. GST enzyme activity level, total cholesterol, triglycerideç LDL-C and CRP levels were found to be higher in thr patient group than the control group, while HDL-C, urea and creatinine levels were found to be higher in the control group than the patient group (Ps <0.05).  
Conclusion: The results obtained indicate that determining the GST enzyme activity level, in addition to routine cardiac markers for the diagnosis of CAD, is important in the diagnosis of CAD-related conditionsç Also ıt will elucidate the mechanisms that constitute the main cause of these diseases.

 
Full-Text [PDF 344 kb]   (107 Downloads) |   |   Full-Text (HTML)  (99 Views)  
Type of Study: orginal article | Subject: Other

References
1. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392(10159):1736-88. [DOI:10.1016/S0140-6736(18)32203-7] [PMID]
2. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics-2021 update: A report from the American Heart Association, Circulation 2021;143(8):e254-e743. [URL]
3. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelinesç, J Am Coll Cardiol 2020;141(16):e774. [DOI:10.1161/CIR.0000000000000771]
4. Koplay M, Erol C. Coronary Artery Disease, Turkish Radiology Seminars Trd Sem. Turkey, 2013.
5. Nicolau JC, Feitosa Filho GS, Petriz JL, Furtado RHM, Précoma DB, et al. Brazilian Society of Cardiology Guidelines on Unstable Angina and Acute Myocardial Infarction without ST-Segment Elevation - 2021. Arq Bras Cardiol 2021;117(1):181-264. [DOI:10.36660/abc.20210180] [PMID] []
6. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016;37(29):2315. [DOI:10.1093/eurheartj/ehw106] [PMID] []
7. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. New Eng J Med 2016;375(24):2349-58. [DOI:10.1056/NEJMoa1605086] [PMID] []
8. Lu SC. Regulation of glutathione synthesis. Mol Aspects Med 2009;30:42-59. [DOI:10.1016/j.mam.2008.05.005] [PMID] []
9. Oakley AJ. Glutathione transferases: a structural perspective. Drug Metab Rev 2011;43(2):138-51. [DOI:10.3109/03602532.2011.558093] [PMID]
10. Öztetik E. A Tale of Plant Glutathione S-Transferases: Since 1970. Botanical Rev 2008;74(3):419-437. [DOI:10.1007/s12229-008-9013-9]
11. Mels CM, Van der Westhuizen FH, Pretorius PJ, Erasmus E. Unbalanced biotransformation metabolism and oxidative stress status: implications for deficient fatty acid oxidation. Health 2011;3(1). [DOI:10.4236/health.2011.31009]
12. Hamilton CJ, Arbach M, Groom M. Beyond Glutathione: Different Low Molecular Weight Thiols as Mediators of Redox Regulation and Other Metabolic Functions in Lower Organisms. Recent Advances in Redox Active Plant and Microbial Products 2014; 291-320. [DOI:10.1007/978-94-017-8953-0_11]
13. Ghiselli A, Serafini M, Natella F, Scaccini C. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 2000;29(11):1106-14. [DOI:10.1016/S0891-5849(00)00394-4] [PMID]
14. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 2003;91(2):179-94. [DOI:10.1093/aob/mcf118] [PMID] []
15. Duran HE. Investigation of the effect of isoxazole derivatives on glutathione-dependent enzymes associated with cancer. MOJ App Bio Biomech 2024;8(1):5-12. [DOI:10.15406/mojabb.2024.08.00199]
16. Kobzar O, Shulha Y, Buldenko V, Cherenok S, Silenko O, Kalchenko V, et al. Inhibition of glutathione S-transferases by photoactive calix(4)arene α-ketophosphonic acids. Bioorg Med Chem Lett 2022;77:129019. [DOI:10.1016/j.bmcl.2022.129019] [PMID]
17. Hamed RR, Maharem TM, Guinid RAM. Glutathione And İts Related Enzymes İn The Nile Fish. Fish Physiol Biochem 2016;42(1):353-64. [DOI:10.1007/s10695-015-0143-9] [PMID]
18. Duran HE. Inhibition Properties of Some Pyrimidine Derivatives as Anticancer Agents on Glutathione S-Transferase. Van Med J 2021;28(4):569-575. [DOI:10.5505/vtd.2021.31391]
19. Hayes JD, Flanagan JU, Jowsey IR. Glutathione Transferases. Ann Rev Pharmacol 2005;45(1):51-88. [DOI:10.1146/annurev.pharmtox.45.120403.095857] [PMID]
20. Gyamfi MA, Ohtani II, Shinno E, Aniya Y. Inhibition of glutathionestransferases by thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea, in vitro. Food Chem Toxicol 2004;42(9):1401-18. [DOI:10.1016/j.fct.2004.04.001] [PMID]
21. Senoner T, Dichtl W. Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients 2019;11(9):2090. [DOI:10.3390/nu11092090] [PMID] []
22. Xie J, Luo C, Mo B, Lin Y, Liu G, Wang X, et al. Inflammation and oxidative stress role of S100A12 as a potential diagnostic and therapeutic biomarker in acute myocardial infarction. Oxid Med Cell Longev 2022;2022:2633123. [DOI:10.1155/2022/2633123] [PMID] []
23. Dursun B, Dursun E, Suleymanlar G, Ozben B, Capraz I, Apaydin A, et al. The effect of hemodialysis on accelerated atherosclerosis in diabetic patients: correlation of carotid artery intima-media thickness with oxidative stres. J Diabetes Complications 2009;23:257-64. [DOI:10.1016/j.jdiacomp.2007.12.007] [PMID]
24. Surekha RH, Srikanth BBMV, Jharna P, Ramachandra RV, Dayasagar V, Jyothy A. Oxidative Stress and Total Anti Oxidant Status in Myocardial Infarction. Singapore Med J 2007;48 (2):137. [Google Scholar]
25. Andreadou I, Iliodromitis EK, Farmakis D & Kremastinos DT. To Prevent, Protect and Save the Ischemic Heart: Antioxidants Revisited. Expert Opin Ther Targets 2009;13(8):945-56. [DOI:10.1517/14728220903039698] [PMID]
26. Habig WH, Jakoby WB. Assays for differentiation of glutathione Stransferases. Methods Enzymol 1981;77:398-405. [DOI:10.1016/S0076-6879(81)77053-8] [PMID]
27. Regmi M, Siccardi MA. Coronary Artery Disease Prevention. In: StatPearls (Internet). Treasure Island (FL): StatPearls Publishing; 2023. [PMID]
28. Kovacic JC, Moreno P, Hachinski V, Nabel EG, Fuster V. Cellular senescence, vascular disease, and aging: Part 1 of a 2-part review. Circulation 2011;123(15):1650-60. [DOI:10.1161/CIRCULATIONAHA.110.007021] [PMID]
29. Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 2018;14(3):185-201. [DOI:10.1038/nrneph.2017.189] [PMID]
30. Zilberman JM, Menopause: Hypertension and vascular disease. Hipertens Riesgo Vasc 2018;35(2):77-83. [DOI:10.1016/j.hipert.2017.11.001] [PMID]
31. Mosca L, Barrett-Connor E, Wenger NK. Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation 2011;124:2145-54. [DOI:10.1161/CIRCULATIONAHA.110.968792] [PMID] []
32. Aksoy S, Cam N, Gurkan U, Oz D, Ozden K, Altay S, et al. Oxidative stress and severity of coronary artery disease in young smokers with acute myocardial infarction. Cardiol J 2012;19(4):381-6. [DOI:10.5603/CJ.2012.0069] [PMID]
33. Sotoudeh AM, Mortazavian BM, Boroumand MA, Eslami B, Jalali A, Goodarzynejad H. Relationship between calculated total antioxidant status and atherosclerotic coronary artery disease. Anatol J Cardiol 2016;16(9):689-695. [Google Scholar]
34. Masuda D, Nakanishi I, Ohkubo K, Ito H, Matsumoto KI, et al. Mitochondria Play Essential Roles in Intracellular Protection against Oxidative Stress-Which Molecules among the ROS Generated in the Mitochondria Can Escape the Mitochondria and Contribute to Signal Activation in Cytosol? Biomolecules 2024;14(1):128. [DOI:10.3390/biom14010128] [PMID] []
35. Faxon DP, Fuster V, Libby P, Beckman JA, Hiatt WR, et al: Atherosclerotic vascular disease conference: writing group III: Pathophysiology. Circulation 2004;109:2617-25. [DOI:10.1161/01.CIR.0000128520.37674.EF] [PMID]
36. Tang JJ, Wang MW, Jia E. The Common Variant in the GST M1 and GST T1 genes is related to markers of oxidative stress and inflamation in patients with coronary artery disease, Mol Biol Rep 2010;37:405-10. [DOI:10.1007/s11033-009-9877-8] [PMID]
37. Simone S, Alexandre da C, Gustavo JJ. Association between glutathione Stransferase polymorphisms and triglycerides and HDL-cholesterol. Atherosclerosis 2009;206:204-8. [DOI:10.1016/j.atherosclerosis.2009.02.011] [PMID]
38. Polimanti R, Piacentini S, Lazzarin N, Antonietta Re M, Manfellotto D, Fuciarelli M: Glutathione S-transferase variants as risk factor for essential hypertension in Italian patients. Mol Cell Biochem 2011;357:227-233. [DOI:10.1007/s11010-011-0893-3] [PMID]
39. Hayek T, Stephens JW, Hubbart CS, Acharya J, Caslake MJ, Hawe E, Miller GJ, Hurel SJ, Humphries SE: A common variant in the glutathione S transferase gene is associated with elevated markers of inflammation and lipid peroxidation in subjects with diabetes mellitus. Atherosclerosis 2006;184(2):404-12. [DOI:10.1016/j.atherosclerosis.2005.05.017] [PMID]
40. Garg R, Aggarwal S, Kumar R, Sharma G. Association of atherosclerosis with dyslipidemia and co-morbid conditions: A descriptive study. J Nat Sci Biol Med 2015;6:163-8. [DOI:10.4103/0976-9668.149117] [PMID] []
41. Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 2013;40:195-211. [DOI:10.1016/j.pop.2012.11.003] [PMID] []
42. Segrest JP. The role of non-LDL:non-HDL particles in atherosclerosis. Curr Diab Rep 2002;2(3):282-8. [DOI:10.1007/s11892-002-0096-0] [PMID]
43. Packard CJ, Saito Y. Non-HDL cholesterol as a measure of atherosclerotic risk. J Atheroscler Thromb 2004;11(1):6-14. [DOI:10.5551/jat.11.6] [PMID]
44. Zhang Y, Wu NQ, Li S, Zhu CG, Guo YL, et al. Non-HDL-C is a Better Predictor for the Severity of Coronary Atherosclerosis Compared with LDL-C. Heart Lung Circ 2016;25:975-81. [DOI:10.1016/j.hlc.2016.04.025] [PMID]
45. Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021;143(11):1157-72. [DOI:10.1161/CIRCULATIONAHA.120.050686] [PMID] []
46. Habib SS, Kurdi MI, Al Aseri Z, Suriya MO. CRP levels are higher in patients with ST elevation than non-ST elevation acute coronary syndrome. Arq Bras Cardiol 2011;96:13-7. [DOI:10.1590/S0066-782X2010005000161] [PMID]
47. Libby P, Ridker PM, Maseri A, Inflammation and Atherosclerosis. Circulation 2002;105:1135-43. [DOI:10.1161/hc0902.104353] [PMID]
48. Osman R, L'Allier PL, Elgharib N, Tardif JC. Critical appraisal of C-reactive protein through out the spectrum of cardiovascular disease. Vasc Health Risk Manag 2006;2:221-7. [DOI:10.2147/vhrm.2006.2.3.221] [PMID] []
49. Ridker PM. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: moving an inflammatory hypothesis toward consensus. J Am Coll Cardiol 2007;49:2129-38. [DOI:10.1016/j.jacc.2007.02.052] [PMID]
50. Cook NR, Buring JE, Ridker PM. The effect of including C-reactive protein in cardiovascular risk prediction models for women. Ann Intern Med 2006;145:21-9. [DOI:10.7326/0003-4819-145-1-200607040-00128] [PMID]
51. Shemesh T, Rowley KG, Jenkins AJ, Best JD, O'Dea K. C-reactive protein concentrations are very high and more stable over time than the traditional vascular risk factors total cholesterol and systolic blood pressure in an Australian aboriginal cohort. Clin Chem 2009;55:336-41. [DOI:10.1373/clinchem.2008.115360] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb