1. Gong X-Q, Tao Y-Y, Wu Y-K, Liu N, Yu X, Wang R, et al. Progress of MRI radiomics in hepatocellular carcinoma. Front. Oncol 2021;11. [
DOI:10.3389/fonc.2021.698373] [
PMID] [
PMCID]
2. Kierans AS, Makkar J, Guniganti P, Cornman-Homonoff J, Lee MJ, Pittman M, et al. Validation of Liver Imaging Reporting and Data System 2017 (LI-RADS) criteria for imaging diagnosis of hepatocellular carcinoma: Validation of 2017 LI-RADS criteria. J. Magn. Reson. Imaging 2019;49(7):e205-15. [
DOI:10.1002/jmri.26329] [
PMID]
3. Wu J, Liu A, Cui J, Chen A, Song Q, Xie L. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images. BMC Med. Imaging 2019;19(1). [
DOI:10.1186/s12880-019-0321-9] [
PMID] [
PMCID]
4. Mokrane F-Z, Lu L, Vavasseur A, Otal P, Peron J-M, Luk L, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur. Radiol 2020;30(1):558-70. [
DOI:10.1007/s00330-019-06347-w] [
PMID]
5. Oyama A, Hiraoka Y, Obayashi I, Saikawa Y, Furui S, Shiraishi K, et al. Hepatic tumor classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a radiomics approach. Sci. Rep 2019;9(1):8764. [
DOI:10.1038/s41598-019-45283-z] [
PMID] [
PMCID]
6. Ai Z, Han Q, Huang Z, Wu J, Xiang Z. The value of multiparametric histogram features based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for the differential diagnosis of liver lesions. Ann. Transl. Med 2020;8(18):1128. [
DOI:10.21037/atm-20-5109] [
PMID] [
PMCID]
7. Mokrane F-Z, Lu L, Vavasseur A, Otal P, Peron J-M, Luk L, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur. Radiol 2020;30(1):558-70. [
DOI:10.1007/s00330-019-06347-w] [
PMID]
8. Xia W, Hu B, Li H, Geng C, Wu Q, Yang L, et al. Multiparametric‐MRI‐based radiomics model for differentiating primary central nervous system lymphoma from glioblastoma: Development and cross‐vendor validation. J. Magn. Reson. Imaging 2021;53(1):242-50. [
DOI:10.1002/jmri.27344] [
PMID]
9. Song X-L, Ren J-L, Zhao D, Wang L, Ren H, Niu J. Radiomics derived from dynamic contrast-enhanced MRI pharmacokinetic protocol features: the value of precision diagnosis ovarian neoplasms. Eur. Radiol 2021;31(1):368-78. [
DOI:10.1007/s00330-020-07112-0] [
PMID]
10. Jian J, Li Y, Pickhardt PJ, Xia W, He Z, Zhang R, et al. MR image-based radiomics to differentiate type Ι and type ΙΙ epithelial ovarian cancers. Eur. Radiol 2021;31(1):403-10. [
DOI:10.1007/s00330-020-07091-2] [
PMID]
11. Kierans AS, Makkar J, Guniganti P, Cornman-Homonoff J, Lee MJ, Pittman M, et al. Validation of liver imaging reporting and Data System 2017 (LI‐RADS) criteria for imaging diagnosis of hepatocellular carcinoma. J. Magn. Reson. Imaging 2019;49(7). [
DOI:10.1002/jmri.26329] [
PMID]
12. Chernyak V, Fowler KJ, Kamaya A, Kielar AZ, Elsayes KM, Bashir MR, et al. Liver Imaging Reporting and Data System (LI-RADS) version 2018: Imaging of hepatocellular carcinoma in at-risk patients. Radiology 2018;289(3):816-30. [
DOI:10.1148/radiol.2018181494] [
PMID] [
PMCID]
13. Kokudo N, Hasegawa K, Akahane M, Igaki H, Izumi N, Ichida T, et al. Evidence‐based Clinical Practice Guidelines for Hepatocellular Carcinoma: The Japan Society of Hepatology 2013 update (3rd JSH‐HCC guidelines). Hepatol. Res 2015;45(2). [
Google Scholar]
14. European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu, European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol 2018;69(1):182-236. [
PMID]
15. Hidig SM, Mohamed MA. Repurposing Antiallergic Drug Desloratadine as a Potential Treatment for Hepatocellular Carcinoma: Short commentary Paper Publications; 2024. [
URL]
16. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges. Theranostics 2019a;9(5):1303-22. [
DOI:10.7150/thno.30309] [
PMID] [
PMCID]
17. Lewis S, Hectors S, Taouli B. Radiomics of hepatocellular carcinoma. Abdom Radiol (NY). 2021 Jan;46(1):111-123. [
DOI:10.1007/s00261-019-02378-5] [
PMID]
18. Bagherzadeh-Khiabani F, Ramezankhani A, Azizi F, Hadaegh F, Steyerberg EW, Khalili D. A tutorial on variable selection for clinical prediction models: feature selection methods in data mining could improve the results. J Clin Epidemiol. 2016;71:76-85. [
DOI:10.1016/j.jclinepi.2015.10.002] [
PMID]
19. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-762. [
DOI:10.1038/nrclinonc.2017.141] [
PMID]
20. Geng Z, Zhang Y, Wang S, Li H, Zhang C, Yin S, et al. Radiomics Analysis of Susceptibility Weighted Imaging for Hepatocellular Carcinoma: Exploring the Correlation between Histopathology and Radiomics Features. Magn Reson Med Sci. 2021;20(3):253-263. [
DOI:10.2463/mrms.mp.2020-0060] [
PMID] [
PMCID]
21. Hidig, S. M. (2024). An Overview of Current Pancreatic Cancer Diagnosis and Treatment in China. IOASD J Med Pharm Sci 1(1), 60-7. [
PMID]
22. Masokano IB, Liu W, Xie S, Marcellin DFH, Pei Y, Li W. The application of texture quantification in hepatocellular carcinoma using CT and MRI: a review of perspectives and challenges. Cancer Imaging. 2020;20(1):67. [
DOI:10.1186/s40644-020-00341-y] [
PMID] [
PMCID]
23. Wei J, Jiang H, Gu D, Niu M, Fu F, Han Y, et al. Radiomics in liver diseases: Current progress and future opportunities. Liver Int. 2020;40(9):2050-63. [
DOI:10.1111/liv.14555] [
PMID] [
PMCID]
24. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin 2021;71(3):209-49. [
DOI:10.3322/caac.21660] [
PMID]
25. Hiley C, de Bruin EC, McGranahan N, Swanton C. Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine. Genome Biol. 2014;15(8):453. [
DOI:10.1186/s13059-014-0453-8] [
PMID] [
PMCID]
26. Hidig, S. M. High Hepatocellular Carcinoma Rates in African Nations: Challenges and Possibilities. IJRRIS 2024;11(1):28-29 [
URL]
27. Aslan K, Turco V, Blobner J, Sonner JK, Liuzzi AR, Núñez NG, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat. Commun 2020;11(1):931. [
DOI:10.1038/s41467-020-14642-0] [
PMID] [
PMCID]
28. Galldiks N, Kocher M, Ceccon G, Werner J-M, Brunn A, Deckert M, et al. Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: response, progression, and pseudoprogression. Neuro. Oncol 2020;22(1):17-30. [
DOI:10.1093/neuonc/noz147] [
PMID] [
PMCID]
29. Aerts HJ. The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review. JAMA Oncol. 2016;1;2(12):1636-1642. [
DOI:10.1001/jamaoncol.2016.2631] [
PMID]
30. Mulé S, Thiefin G, Costentin C, Durot C, Rahmouni A, Luciani A, et al. Advanced hepatocellular carcinoma: Pretreatment contrast-enhanced CT texture parameters as predictive biomarkers of survival in patients treated with sorafenib. Radiology 2018;288(2):445-55. [
DOI:10.1148/radiol.2018171320] [
PMID]
31. Yuan G, Song Y, Li Q, Hu X, Zang M, Dai W, et al. Development and validation of a contrast-enhanced CT-based radiomics nomogram for prediction of therapeutic efficacy of anti-PD-1 antibodies in advanced HCC patients. Front. Immunol 2020;11:613946. [
DOI:10.3389/fimmu.2020.613946] [
PMID] [
PMCID]
32. Edeline J, Boucher E, Rolland Y, Vauléon E, Pracht M, Perrin C, et al. Comparison of tumor response by Response Evaluation Criteria in Solid Tumors (RECIST) and modified RECIST in patients treated with sorafenib for hepatocellular carcinoma: MRECIST Impact in Sorafenib-Treated HCC. Cancer 2012;118(1):147-56. [
DOI:10.1002/cncr.26255] [
PMID]
33. Lencioni R, Montal R, Torres F, Park J-W, Decaens T, Raoul J-L, et al. Objective response by mRECIST as a predictor and potential surrogate end-point of overall survival in advanced HCC. J. Hepatol 2017;66(6):1166-72. [
DOI:10.1016/j.jhep.2017.01.012] [
PMID]
34. Jeon MY, Lee HW, Kim BK, Park JY, Kim DY, Ahn SH, et al. Reproducibility of European Association for the Study of the Liver criteria and modified Response Evaluation Criteria in Solid Tumors in patients treated with sorafenib. Liver Int 2018;38(9):1655-63. [
DOI:10.1111/liv.13731] [
PMID]
35. Jiang T, Kambadakone A, Kulkarni NM, Zhu AX, Sahani DV. Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST). Invest Radiol 2012 ;47(1):11-7. [
DOI:10.1097/RLI.0b013e3182199bb5] [
PMID]
36. Hui TCH, Chuah TK, Low HM, Tan CH. Predicting early recurrence of hepatocellular carcinoma with texture analysis of preoperative MRI: a radiomics study. Clin Radiol 2018;73(12):1056.e11-1056.e16. [
DOI:10.1016/j.crad.2018.07.109] [
PMID]
37. Zhang Z, Jiang H, Chen J, Wei Y, Cao L, Ye Z, et al. Hepatocellular carcinoma: radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction. Cancer Imaging 2019;19(1). [
DOI:10.1186/s40644-019-0209-5] [
PMID] [
PMCID]
38. Zhu Y-J, Feng B, Wang S, Wang L-M, Wu J-F, Ma X-H, et al. Model-based three-dimensional texture analysis of contrast-enhanced magnetic resonance imaging as a potential tool for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Oncol. Lett 2019;18(1):720-32. [
DOI:10.3892/ol.2019.10378]
39. Yang L, Gu D, Wei J, Yang C, Rao S, Wang W, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Liver Cancer 2019;8(5):373-86. [
DOI:10.1159/000494099] [
PMID] [
]
40. Kim KA, Kim M-J, Jeon HM, Kim KS, Choi J-S, Ahn SH, et al. Prediction of microvascular invasion of hepatocellular carcinoma: usefulness of peritumoral hypointensity seen on gadoxetate disodium-enhanced hepatobiliary phase images. J. Magn. Reson. Imaging 2012;35(3):629-34. [
DOI:10.1002/jmri.22876] [
PMID]
41. Kim JY, Kim MJ, Kim KA, Jeong HT, Park YN. Hyperintense HCC on hepatobiliary phase images of gadoxetic acid-enhanced MRI: correlation with clinical and pathological features. Eur J Radiol 2012;81(12):3877-82. [
DOI:10.1016/j.ejrad.2012.07.021] [
PMID]