XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi Shadmehri A, Namvar F. A Review on Green Synthesis, Cytotoxicity Mechanism and Antibacterial Activity of Zno-NPs. Journal of Research in Applied and Basic Medical Sciences 2020; 6 (1) :23-31
URL: http://ijrabms.umsu.ac.ir/article-1-95-en.html
Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran , ahmadi492004@yahoo.com
Abstract:   (3953 Views)
Recently, the development of eco-friendly methods for the synthesis of nanoparticles is an important key to nanotechnology. The use of green techniques using plants for the synthesis of nanoparticles is a replacement for chemical and physical techniques, because they are hazardous. Therefore, in this paper, we refer to green synthesis method using plant extracts and cytotoxicity and antibacterial mechanisms. Zinc oxide nanoparticles (ZnO-NPs) have been considered with regard to unique properties such as biocompatibility, selective cytotoxicity, anti-cancer and antibacterial activity. These nanoparticles are dissolved in the medium or in the cell and zinc ions are released, these zinc ions result in zinc-mediated protein activity disequilibrium and oxidative stress through reactive oxygen species, which may have a potential mechanism of action cytotoxicity of nanoparticles. Given the selective cytotoxic effects of ZnO-NPs due to the presence of more ROS in cancer cells, these nanoparticles can selectively target cancer cells and can be used as an anticancer agent. On the other hand, ZnO-NPs have significant antibacterial properties. Antimicrobial mechanism of ZnO-NPs may take place through the interaction of nanoparticles with bacterial cell surface and the production of reactive oxygen species (ROS) and release of zinc ions. ROS and free ions are important factors for several mechanisms, including increased membrane permeability, cell wall damage. These will weaken the mitochondria and cause oxidative stress and ultimately inhibit cell growth and cell death. Due to the selective toxicity effect against cancer cells, it can be used as a useful agent for the treatment of cancer and an alternative to antibiotics.
Full-Text [PDF 287 kb]   (2509 Downloads)    
Type of Study: review article | Subject: General

1. Sabir S, Arshad M, Chaudhari SK. ZnO-NPs for Revolutionizing Agriculture : Synthesis and Applications. Sci World J. 2014; http://dx.doi.org/10.1155/2014/925494. [DOI:10.1155/2014/925494] [PMID] [PMCID]
2. Hu Z, Li J, Li C, Zhao S, Li N, Wang Y, et al. Folic acid-conjugated graphene-ZnO nanohybrid for targeting photodynamic therapy under visible light irradiation. J Mater Chem B 2013;1(38):5003. [DOI:10.1039/c3tb20849d] [PMID]
3. Azizi S, Ahmad MB, Namvar F, Mohamad R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials Letters 2014;116:275-7. [DOI:10.1016/j.matlet.2013.11.038]
4. Kalpana VN, Devi Rajeswari V. A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs. Bioinorg Chem Appl 2018;2018:3569758. [DOI:10.1155/2018/3569758] [PMID] [PMCID]
5. Bisht G, Rayamajhi S. ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine (Rij) 2016;3:9. [DOI:10.5772/63437] [PMID] [PMCID]
6. Zhang A, Sun Y. Photocatalytic killing effect of TiO 2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 2004;10(21):3191-3. [DOI:10.3748/wjg.v10.i21.3191] [PMID] [PMCID]
7. Vinardell MP, Mitjans M. Antitumor Activities of Metal Oxide Nanoparticles. Nanomaterials 2015; 5:1004-21. [DOI:10.3390/nano5021004] [PMID] [PMCID]
8. Shen C, James SA, Jonge MD De, Turney TW, Wright PFA, Feltis BN. Relating Cytotoxicity , Zinc Ions , and Reactive Oxygen in ZnO Nanoparticle - Exposed Human Immune Cells. Toxicol Sci 2013;136(1):120-30. [DOI:10.1093/toxsci/kft187] [PMID]
9. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on ZnO-NPs: Antibacterial activity and toxicity mechanism. Nano-Micro Lett 2015;7(3):219-42. [DOI:10.1007/s40820-015-0040-x] [PMID] [PMCID]
10. Zaman S. Synthesis of ZnO , CuO and their Composite Nanostructures for Optoelectronics , Sensing and Catalytic Applications. Linköping Studies in Science and Technology 2012;1467. [Google Scholar]
11. An S, Joshi BN, Lee MW, Kim NY, Yoon SS. Electrospun graphene-ZnO nanofiber mats for photocatalysis applications. Appl Surf Sci 2014;294:24-8. [DOI:10.1016/j.apsusc.2013.12.159]
12. Song J, Zhou J, Wang ZL. Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt / Wire . A Technology for Harvesting Electricity from the Environment. Nano Lett 2006;6(8):1656-62. [DOI:10.1021/nl060820v] [PMID]
13. Uikey P, Vishwakarma K. Review OF Zinc oxide(ZNO) Nanoparticles applications and Properties. Int J Emerg Technol Comput Sci Electron 2016;21(2):976-1353.
14. Sawal J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M. Effect of particle size heating temperature of ceramic powders aon antibacterial activity of their slurries. J CHEM ENG JPN 1996;20(2):251-6. [DOI:10.1252/jcej.29.251]
15. Naveed Ul Haq A, Nadhman A, Ullah I, Mustafa G, Yasinzai M, Khan I. Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. J Nanomater 2017;2017:1-14. [DOI:10.1155/2017/8510342]
16. Rai M, Yadav A. Plants as potential synthesiser of precious metal nanoparticles : progress and prospects. Iet Nanobiotechnol 2013;7(3):117-24. [DOI:10.1049/iet-nbt.2012.0031] [PMID]
17. Namvar F, Rahman HS, Mohamad R, Azizi S, Tahir PM, Chartrand MS, et al. Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines. J Evid Based Complementary Altern Med 2015;2015:1-11. [DOI:10.1155/2015/593014] [PMID] [PMCID]
18. Goodarzi V, Zamani H, Bajuli L, Moradshahi A, et al. Evaluation of antioxidant potential and reduction capacity of some plant extracts in silver nanoparticle synthesis. Mol Biol Res Commun 2014;3(3):165-74. [Pub Med]
19. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm J 2016;24(4):473-84. [DOI:10.1016/j.jsps.2014.11.013] [PMID] [PMCID]
20. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015;8:7278-308. [DOI:10.3390/ma8115377] [PMID] [PMCID]
21. Manokari M, Shekhawat MS. Biosynthesis of ZnO-NPs from the Aerial Parts of Hibiscus rosa-sinensis L. J Sci Achievements 2017;2(5):1-6. [ResearchGate]
22. Panda K, Golari D, Venugopal A, Achary V, Phaomei G, Parinandi N, et al. Green Synthesized Zinc Oxide(ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System. Antioxidants 2017;6(2):35. [DOI:10.3390/antiox6020035] [PMID] [PMCID]
23. Shekhawat MS, Ravindran CP, Manokari M. A biomimetic approach towards synthesis of ZnO-NPs using Hybanthus enneaspermus( L .) F . Muell. Trop Plant Res 2014;1:55-9. [Google Scholar]
24. Manokari M, Shekhawat MS. Biogenesis of ZnO-NPs using Aqueous Extracts of Hemidesmus indicus( L .) R . Br. IJRSMB 2015;1(1):20-4. [Google Scholar]
25. Manokari M, Shekhawat MS. Production of ZnO-NPs using extracts of Passiflora edulis Sims . f . flavicarpa Deg WSN 2016;47(2):267-78. [Google Scholar]
26. Priyanka K, Brindha D. In vitro anticancer and antiplatelet activity of zinc oxide nanoparticle synthesised seed extracts of Celosia Argentea L. IJCR 2017;9(5):50932-5. [Address]
27. Raj LFAA, Jayalakshmy E. Biosynthesis and Characterization of ZnO-NPs Using Root Extract of Zingiber Officinale. Orient J Chem 2015;31(1):51-6. [DOI:10.13005/ojc/310105]
28. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, et al. Green synthesis of ZnO-NPs using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 2015;5(7):4993-5003. [DOI:10.1039/C4RA12784F]
29. Jamdagni P, Khatri P, Rana JS. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci 2018;30(2):168-175. [DOI:10.1016/j.jksus.2016.10.002]
30. Fatimah I, Pradita RY, Nurfalinda A. Plant Extract Mediated of ZnO Nanoparticles by Using Ethanol Extract of Mimosa Pudica Leaves and Coffee Powder. Procedia Eng 2016;148:43-8. [DOI:10.1016/j.proeng.2016.06.483]
31. Geetha MS, Nagabhushana H, Shivananjaiah HN. Journal of Science : Advanced Materials and Devices Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J Sci Adv Mater Devices 2016;1(3):301-10. [DOI:10.1016/j.jsamd.2016.06.015]
32. C.Parthiban, N.Sundaramurthy. Biosynthesis , Characterization of ZnO Nanoparticles by Using Pyrus Pyrifolia Leaf Extract and Their Photocatalytic Activity. IJIRSET 2015;4(10):9710-8. [Address]
33. Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK. Green chemistry based benign routes for nanoparticle synthesis. J Nanoparticles 2014;2014:1-14. [DOI:10.1155/2014/302429]
34. Namvar F, Azizi S, Rahman HS, Mohamad R, Rasedee A, Soltani M, et al. Green synthesis , characterization , and anticancer activity of hyaluronan / zinc oxide nanocomposite. OncoTargets and Therapy 2016;9:4549-59. [DOI:10.2147/OTT.S95962] [PMID] [PMCID]
35. Rasmussen JW, Martinez E, Louka P, Wingett DG. ZnO-NPs for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications. Expert Opin Drug Deliv 2011;7(9):1063-77. [DOI:10.1517/17425247.2010.502560] [PMID] [PMCID]
36. Abercrombie A, Ambrose AJ. The Surface Properties of Cancer Cells : A Review. Cancer Res 1962;22:525-48. [Pub Med]
37. Wang R, Xing RM, xu J, Yu DP. Fabrication and microstructure analysis on zinc oxide nanotubes. New J Physics 2003;5: 115.1-115.7. [DOI:10.1088/1367-2630/5/1/115]
38. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, et al. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 2008;19(29):295103. [DOI:10.1088/0957-4484/19/29/295103] [PMID] [PMCID]
39. Akhtar JM, Ahamed M, Kumar S, Majeed Khan M, Ahmad J, Alrokayan SA. ZnO-NPs selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine 2012;7:845-57. [DOI:10.2147/IJN.S29129] [PMID] [PMCID]
40. Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 2009;11(1):50-61. [DOI:10.1038/nrm2820] [PMID]
41. Shen C, James SA, De jonge MD, Turney TW, Wright PFA, Feltis BN. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci 2013;136(1):120-30. [DOI:10.1093/toxsci/kft187] [PMID]
42. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM V., Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009;8(7):543-57. [DOI:10.1038/nmat2442] [PMID]
43. Bedi PS, Kaur A. an Overview on Uses of ZnO-NPs. World J Pharm Pharm Sci 2015;4(12):1177-96. [ResearchGate]
44. Johar MA, Afzal RA, Alazba AA, Manzoor U. Photocatalysis and bandgap engineering using ZnO nanocomposites. Adv Materials Sci Engin 2015;2015:1-22. [DOI:10.1155/2015/934587]
45. Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, et al. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 2009;20(11):115101. [DOI:10.1088/0957-4484/20/11/115101] [PMID]
46. Liou M-Y, Storz P. ROSin cancer. Free Radic Res 2010;44(5) [DOI:10.3109/10715761003667554] [PMID] [PMCID]
47. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals , metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions 2006;160:1-40. [DOI:10.1016/j.cbi.2005.12.009] [PMID]
48. Sanaeimehr Z, Javadi I, Namvar F. Antiangiogenic and antiapoptotic effects of green-synthesized ZnO-NPs using Sargassum muticum algae extraction. Cancer Nano 2018;9(1). [DOI:10.1186/s12645-018-0037-5] [PMID] [PMCID]
49. Ng KW, Khoo SPK, Heng BC, Setyawati MI, Tan EC, Zhao X, et al. The role of the tumor suppressor p53 pathway in the cellular DNA damage response to ZnO-NPs. Biomaterials 2011;32:8218-25. [DOI:10.1016/j.biomaterials.2011.07.036] [PMID]
50. Jiang J, Pi J, Cai J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg Chem Appl 2018;2018:1062562. [DOI:10.1155/2018/1062562] [PMID] [PMCID]
51. Reddy KM, Feris K, Bell J, Wingett DG, Hanley G, Punnoosa A. Selective toxicity of ZnO-NPs to prokaryotic and eukaryotic systems. Appl Phys Lett. 2007;90(213902):1-8. [DOI:10.1063/1.2742324] [PMID] [PMCID]
52. Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles(ZnO nanofluids). J Nanoparticle Res 2007;9(3):479-89. [DOI:10.1007/s11051-006-9150-1]
53. Zhong L, Yun K. Graphene oxide-modified zno particles: Synthesis, characterization, and antibacterial properties. Int J Nanomedicine 2015;10:79-92. [DOI:10.2147/IJN.S88319] [PMID] [PMCID]
54. Zhang Y, Ram MK, Stefanakos EK, Goswami DY. Synthesis, characterization, and applications of ZnO nanowires. J Nanomateri 2012;2012:20. https://doi.org/10.1155/2012/293041 [DOI:10.1155/2012/624520]
55. Yun H, Kim JD, Choi HC, Lee CW. Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against gram-negative and gram-positive bacteria. Bull Korean Chem Soc 2013;34(11):3261-4. [DOI:10.5012/bkcs.2013.34.11.3261]
56. Dobrucka R, Długaszewska J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 2016;23(4):517-23. [DOI:10.1016/j.sjbs.2015.05.016] [PMID] [PMCID]
57. Jiang Y, Zhang L, Wen D, Ding Y. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. Mater Sci Eng C Mater Biol Appl 2016;69:1361-6. [DOI:10.1016/j.msec.2016.08.044] [PMID]
58. Suresh D, Nethravathi PC, Udayabhanu, Rajanaika H, Nagabhushana H, Sharma SC. Green synthesis of multifunctional zinc oxide(ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process 2015;31:446-54. [DOI:10.1016/j.mssp.2014.12.023]
59. Zarrindokht Emami-Karvani. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African J Microbiol Res 2012;5(12):1368-73. [DOI:10.5897/AJMR10.159]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research in Applied and Basic Medical Sciences

Designed & Developed by : Yektaweb